Home
Class 12
MATHS
The value of lim(x to 0) (tan x - sin ...

The value of ` lim_(x to 0) (tan x - sin s)/(x^(3))` equals

A

1

B

`(1)/(2)`

C

`(-1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \), we will use the Taylor series expansions for \(\tan x\) and \(\sin x\). ### Step-by-Step Solution: 1. **Write the Taylor series expansion for \(\tan x\)**: \[ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7) \] 2. **Write the Taylor series expansion for \(\sin x\)**: \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \] 3. **Subtract the series for \(\sin x\) from \(\tan x\)**: \[ \tan x - \sin x = \left( x + \frac{x^3}{3} + \frac{2x^5}{15} \right) - \left( x - \frac{x^3}{6} + \frac{x^5}{120} \right) \] Simplifying this gives: \[ \tan x - \sin x = \left( \frac{x^3}{3} + \frac{x^3}{6} \right) + \left( \frac{2x^5}{15} - \frac{x^5}{120} \right) \] 4. **Combine the \(x^3\) terms**: \[ \frac{x^3}{3} + \frac{x^3}{6} = \frac{2x^3}{6} + \frac{x^3}{6} = \frac{3x^3}{6} = \frac{x^3}{2} \] 5. **Combine the \(x^5\) terms**: \[ \frac{2x^5}{15} - \frac{x^5}{120} = \frac{16x^5}{120} - \frac{x^5}{120} = \frac{15x^5}{120} = \frac{x^5}{8} \] 6. **Thus, we have**: \[ \tan x - \sin x = \frac{x^3}{2} + O(x^5) \] 7. **Now substitute this back into the limit**: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{2} + O(x^5)}{x^3} \] 8. **Simplifying the limit**: \[ = \lim_{x \to 0} \left( \frac{1}{2} + \frac{O(x^5)}{x^3} \right) = \frac{1}{2} + 0 = \frac{1}{2} \] ### Final Answer: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

Evaluate: lim_(x to 0) (sin x)/(tan x)

The value of lim_(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x)) is equal to

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  2. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  3. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  4. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  5. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  6. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  7. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  8. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  9. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  10. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  11. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  12. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  13. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  14. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  15. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  16. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  17. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  18. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  19. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  20. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |