Home
Class 12
MATHS
The value of lim(x to 0) (tan x - sin ...

The value of ` lim_(x to 0) (tan x - sin s)/(x^(3))` equals

A

1

B

`(1)/(2)`

C

`(-1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \), we will use the Taylor series expansions for \(\tan x\) and \(\sin x\). ### Step-by-Step Solution: 1. **Write the Taylor series expansion for \(\tan x\)**: \[ \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7) \] 2. **Write the Taylor series expansion for \(\sin x\)**: \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \] 3. **Subtract the series for \(\sin x\) from \(\tan x\)**: \[ \tan x - \sin x = \left( x + \frac{x^3}{3} + \frac{2x^5}{15} \right) - \left( x - \frac{x^3}{6} + \frac{x^5}{120} \right) \] Simplifying this gives: \[ \tan x - \sin x = \left( \frac{x^3}{3} + \frac{x^3}{6} \right) + \left( \frac{2x^5}{15} - \frac{x^5}{120} \right) \] 4. **Combine the \(x^3\) terms**: \[ \frac{x^3}{3} + \frac{x^3}{6} = \frac{2x^3}{6} + \frac{x^3}{6} = \frac{3x^3}{6} = \frac{x^3}{2} \] 5. **Combine the \(x^5\) terms**: \[ \frac{2x^5}{15} - \frac{x^5}{120} = \frac{16x^5}{120} - \frac{x^5}{120} = \frac{15x^5}{120} = \frac{x^5}{8} \] 6. **Thus, we have**: \[ \tan x - \sin x = \frac{x^3}{2} + O(x^5) \] 7. **Now substitute this back into the limit**: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{2} + O(x^5)}{x^3} \] 8. **Simplifying the limit**: \[ = \lim_{x \to 0} \left( \frac{1}{2} + \frac{O(x^5)}{x^3} \right) = \frac{1}{2} + 0 = \frac{1}{2} \] ### Final Answer: \[ \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

Evaluate: lim_(x to 0) (sin x)/(tan x)

The value of lim_(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x)) is equal to