Home
Class 12
MATHS
lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - ...

`lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =`

A

2

B

`log_(e) 2`

C

`log_(e) 2)`

D

`2 log_(e) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} \), we can use two methods: the expansion method and L'Hôpital's rule. Here, I will provide a step-by-step solution using the expansion method. ### Step-by-Step Solution: 1. **Identify the limit**: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} \] 2. **Expand \(2^x\) using Taylor series**: The Taylor series expansion of \(2^x\) around \(x = 0\) is: \[ 2^x = 1 + x \ln(2) + \frac{x^2 (\ln(2))^2}{2!} + \cdots \] Thus, \[ 2^x - 1 = x \ln(2) + \frac{x^2 (\ln(2))^2}{2} + \cdots \] 3. **Expand \(\sqrt{1 + x}\) using Taylor series**: The Taylor series expansion of \(\sqrt{1 + x}\) around \(x = 0\) is: \[ \sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \cdots \] Thus, \[ \sqrt{1 + x} - 1 = \frac{x}{2} - \frac{x^2}{8} + \cdots \] 4. **Substitute the expansions into the limit**: Now substituting these expansions into the limit gives: \[ \lim_{x \to 0} \frac{x \ln(2) + \frac{x^2 (\ln(2))^2}{2} + \cdots}{\frac{x}{2} - \frac{x^2}{8} + \cdots} \] 5. **Simplify the expression**: As \(x \to 0\), we can ignore higher-order terms. The limit simplifies to: \[ \lim_{x \to 0} \frac{x \ln(2)}{\frac{x}{2}} = \lim_{x \to 0} \frac{2 \ln(2)}{1} = 2 \ln(2) \] 6. **Final answer**: Therefore, the limit is: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1} = 2 \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/(sqrt(1+x)-1)

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

lim_(x rarr 0)((3^(x)-1)/(sqrt(1+x)-1))

lim_(x to 0) (x)/(sqrt(1+x-1))

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

Evaluate lim_(x to 0) (sqrt(1 + x) + sqrt(1 - x))/(1 - x)

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  2. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  3. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  4. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  5. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  6. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  7. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  8. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  9. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  10. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  11. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  12. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  13. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  14. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  15. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  16. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  17. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  18. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  19. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  20. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |