Home
Class 12
MATHS
The value of lim(x to 0) (log (5 + x) -...

The value of `lim_(x to 0) (log (5 + x) - log (5 - x))/(x)` equals

A

`(1)/(5)`

B

`(2)/(5)`

C

0

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\log(5 + x) - \log(5 - x)}{x} \), we can follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{\log(5 + x) - \log(5 - x)}{x} \] ### Step 2: Check the form of the limit Substituting \( x = 0 \) directly into the expression gives: \[ \frac{\log(5 + 0) - \log(5 - 0)}{0} = \frac{\log(5) - \log(5)}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The derivative of the numerator \( \log(5 + x) - \log(5 - x) \) is: \[ \frac{d}{dx}[\log(5 + x)] - \frac{d}{dx}[\log(5 - x)] = \frac{1}{5 + x} - \left(-\frac{1}{5 - x}\right) = \frac{1}{5 + x} + \frac{1}{5 - x} \] - The derivative of the denominator \( x \) is \( 1 \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{1}{5 + x} + \frac{1}{5 - x} \right) \] ### Step 4: Evaluate the limit Now we can directly substitute \( x = 0 \): \[ \lim_{x \to 0} \left( \frac{1}{5 + 0} + \frac{1}{5 - 0} \right) = \frac{1}{5} + \frac{1}{5} = \frac{2}{5} \] ### Final Answer Thus, the value of the limit is: \[ \frac{2}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate Lim_(x to 0) (log (a+x) - log(a-x))/x , a gt 0

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

The value of : lim_(xrarroo)("log" x)/(x) is:

lim_{x \to 0} log x/cot x = 0

The value of lim_(xrarr1)(log_5 5x)^(log_x5) , is

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  2. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  3. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  4. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  5. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  6. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  7. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  8. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  9. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  10. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  11. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  12. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  13. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  14. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  18. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  19. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  20. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |