Home
Class 12
MATHS
If m,n in I^(+), then lim(x to 0) ("si...

If ` m,n in I^(+)`, then `lim_(x to 0) ("sin"x^(n))/(("sin"x)^(m))` equals

A

1, if `n lt m`

B

0, if n = m

C

`(n)/(m)`

D

0, if `n gt m`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} \), we will use the known limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \) and analyze the behavior of the function as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Rewrite the limit**: We start with the expression: \[ \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} \] 2. **Use the limit property**: We know that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \). Therefore, we can express \( \sin(x^n) \) and \( \sin x \) in terms of \( x \): \[ \sin(x^n) \approx x^n \quad \text{as } x \to 0 \] \[ \sin x \approx x \quad \text{as } x \to 0 \] 3. **Substituting the approximations**: Substitute these approximations into the limit: \[ \lim_{x \to 0} \frac{x^n}{(x)^m} = \lim_{x \to 0} \frac{x^n}{x^m} = \lim_{x \to 0} x^{n-m} \] 4. **Analyze the limit based on \( n \) and \( m \)**: Now we analyze the limit based on the relationship between \( n \) and \( m \): - **Case 1**: If \( n = m \): \[ \lim_{x \to 0} x^{n-m} = \lim_{x \to 0} x^0 = 1 \] - **Case 2**: If \( n > m \): \[ \lim_{x \to 0} x^{n-m} = \lim_{x \to 0} x^{\text{positive}} = 0 \] - **Case 3**: If \( n < m \): \[ \lim_{x \to 0} x^{n-m} = \lim_{x \to 0} \frac{1}{x^{\text{positive}}} = \infty \] 5. **Conclusion**: Therefore, we can summarize the results: \[ \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n > m \\ \infty & \text{if } n < m \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate lim_(x to 0) ("sin"ax)/(x)

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(x->0) (sin x /x)

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

Given, lim_(xto0) (sin3x)/(sin7x) .

lim _( x to 0) (e ^(sin (x ))-1)/(x ) equals to :

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(x to 0) (sin x^(@))/( x) is equal to

lim_(x to 0) (sin 3x)/(x) is equal to

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  2. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  3. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  4. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  5. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  6. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  7. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  8. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  9. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  10. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  11. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  12. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  13. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  14. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  15. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  16. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  17. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  18. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  19. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  20. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |