Home
Class 12
MATHS
The value of lim(x to 0) ("sin" (pi cos...

The value of `lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2))` equals

A

`- pi`

B

`pi`

C

`(pi)/(2)`

D

`2 pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the sine function We know that \( \sin(\theta) \) can be rewritten using the identity \( \sin(\pi - \theta) = \sin(\theta) \). Here, we will express \( \sin(\pi \cos^2 x) \) in a different form. ### Step 2: Use the identity We can express \( \sin(\pi \cos^2 x) \) as: \[ \sin(\pi \cos^2 x) = \sin(\pi (1 - \sin^2 x)) \] This simplifies to: \[ \sin(\pi \cos^2 x) = \sin(\pi - \pi \sin^2 x) = \sin(\pi \sin^2 x) \] ### Step 3: Substitute in the limit Now, we substitute this back into our limit: \[ \lim_{x \to 0} \frac{\sin(\pi \sin^2 x)}{x^2} \] ### Step 4: Use the small angle approximation For small values of \( x \), we can use the approximation \( \sin y \approx y \) when \( y \) is close to 0. Thus, we can write: \[ \sin(\pi \sin^2 x) \approx \pi \sin^2 x \] ### Step 5: Substitute the approximation Now we substitute this approximation into our limit: \[ \lim_{x \to 0} \frac{\pi \sin^2 x}{x^2} \] ### Step 6: Use the limit property Using the property \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can rewrite \( \sin^2 x \) as: \[ \sin^2 x = \left(\frac{\sin x}{x}\right)^2 x^2 \] Thus, we have: \[ \lim_{x \to 0} \frac{\pi \sin^2 x}{x^2} = \lim_{x \to 0} \pi \left(\frac{\sin x}{x}\right)^2 \] ### Step 7: Evaluate the limit As \( x \to 0 \), \( \left(\frac{\sin x}{x}\right)^2 \to 1 \). Therefore, we have: \[ \lim_{x \to 0} \pi \left(\frac{\sin x}{x}\right)^2 = \pi \cdot 1 = \pi \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} = \pi \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

lim_(x to 0) (sin x + cos 3x)^(2//x) =

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

lim_(x to 0) (cos x)/(pi-x)

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  2. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  3. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  4. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  5. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  6. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  7. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  8. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  9. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  10. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  11. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  12. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  15. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  16. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  17. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  18. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  19. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  20. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |