Home
Class 12
MATHS
The value of lim(x to oo) (sqrt(x^(2) + ...

The value of `lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1))` equals

A

0

B

1

C

`-1`

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right) \), we can follow these steps: ### Step 1: Multiply by the Conjugate We start by multiplying and dividing the expression by the conjugate of the numerator: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right) \cdot \frac{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \] ### Step 2: Simplify the Numerator Using the difference of squares, the numerator simplifies as follows: \[ \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} = \frac{(x^2 + x + 1) - (x^2 - x + 1)}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \] This simplifies to: \[ \frac{x + x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} = \frac{2x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \] ### Step 3: Rewrite the Limit Now we rewrite our limit: \[ \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \] ### Step 4: Factor out \(x\) from the Square Roots Next, we factor \(x^2\) out of the square roots in the denominator: \[ \sqrt{x^2 + x + 1} = \sqrt{x^2(1 + \frac{1}{x} + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \] \[ \sqrt{x^2 - x + 1} = \sqrt{x^2(1 - \frac{1}{x} + \frac{1}{x^2})} = x\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} \] ### Step 5: Substitute Back into the Limit Substituting these back into our limit gives: \[ \lim_{x \to \infty} \frac{2x}{x\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}\right)} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}} \] ### Step 6: Evaluate the Limit As \(x\) approaches infinity, the terms \(\frac{1}{x}\) and \(\frac{1}{x^2}\) approach 0: \[ \lim_{x \to \infty} \frac{2}{\sqrt{1 + 0 + 0} + \sqrt{1 - 0 + 0}} = \frac{2}{1 + 1} = \frac{2}{2} = 1 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(x to oo ) [sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)].

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |