Home
Class 12
MATHS
The value of lim(x to 0) ((1)/(x^(2)) - ...

The value of `lim_(x to 0) ((1)/(x^(2)) - cot x)` equals

A

1

B

0

C

`oo`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{1}{x^2} - \cot x \right) \), we will follow these steps: ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \cot x \right) \] Recall that \( \cot x = \frac{\cos x}{\sin x} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \frac{\cos x}{\sin x} \right) \] ### Step 2: Find a common denominator Next, we find a common denominator for the two fractions: \[ \lim_{x \to 0} \left( \frac{\sin x - x^2 \cos x}{x^2 \sin x} \right) \] ### Step 3: Evaluate the limit Now, we substitute \( x = 0 \): \[ \sin(0) - 0^2 \cos(0) = 0 - 0 = 0 \] and the denominator becomes: \[ 0^2 \sin(0) = 0 \cdot 0 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator: \[ \text{Numerator: } \frac{d}{dx}(\sin x - x^2 \cos x) = \cos x - (2x \cos x - x^2 \sin x) \] This simplifies to: \[ \cos x - 2x \cos x + x^2 \sin x \] \[ = \cos x (1 - 2x) + x^2 \sin x \] For the denominator: \[ \text{Denominator: } \frac{d}{dx}(x^2 \sin x) = 2x \sin x + x^2 \cos x \] ### Step 5: Substitute \( x = 0 \) again Now we evaluate the limit again: \[ \lim_{x \to 0} \frac{\cos x (1 - 2x) + x^2 \sin x}{2x \sin x + x^2 \cos x} \] Substituting \( x = 0 \): \[ \frac{1(1 - 0) + 0}{0 + 0} = \frac{1}{0} \] This indicates that the limit approaches infinity. ### Conclusion Thus, we conclude that: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \cot x \right) = \infty \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) ((1)/(x) - cot x) equals

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

The value of : lim_(x to 0) (cos x)^(1/x) is

Evaluate lim_(x to 0) (x^(3) cot x)/(1 - cos x)

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(x to 0) (sin x^(@))/( x) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarroo) x^(1//x) equals

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |