Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0`. Then `underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

A

`(1)/(2) (alpha - beta)^(2)`

B

`-(a^(2))/(2) (alpha - beta)^(2)`

C

0

D

`(a^(2))/(2) (alpha - beta)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps systematically. ### Step 1: Understand the Quadratic Equation Given the quadratic equation \( ax^2 + bx + c = 0 \), we know that \( \alpha \) and \( \beta \) are its distinct roots. We can express the quadratic in factored form as: \[ a(x - \alpha)(x - \beta) = 0 \] ### Step 2: Rewrite the Limit Expression We need to evaluate the limit: \[ \lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2} \] Since \( ax^2 + bx + c = 0 \) at \( x = \alpha \), we can rewrite this as: \[ ax^2 + bx + c = a(x - \alpha)(x - \beta) \] ### Step 3: Substitute in the Limit Substituting into the limit, we have: \[ \lim_{x \to \alpha} \frac{1 - \cos\left(a(x - \alpha)(x - \beta)\right)}{(x - \alpha)^2} \] ### Step 4: Use the Trigonometric Identity Using the identity \( 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \), we can rewrite the limit: \[ \lim_{x \to \alpha} \frac{2 \sin^2\left(\frac{a(x - \alpha)(x - \beta)}{2}\right)}{(x - \alpha)^2} \] ### Step 5: Apply the Limit Now, we can simplify this limit. As \( x \to \alpha \), \( (x - \alpha) \to 0 \). We can use the fact that \( \sin z \approx z \) when \( z \) is close to 0: \[ \sin\left(\frac{a(x - \alpha)(x - \beta)}{2}\right) \approx \frac{a(x - \alpha)(x - \beta)}{2} \] Thus, we have: \[ \sin^2\left(\frac{a(x - \alpha)(x - \beta)}{2}\right) \approx \left(\frac{a(x - \alpha)(x - \beta)}{2}\right)^2 \] ### Step 6: Substitute Back into the Limit Substituting this back into our limit expression gives: \[ \lim_{x \to \alpha} \frac{2 \left(\frac{a(x - \alpha)(x - \beta)}{2}\right)^2}{(x - \alpha)^2} \] This simplifies to: \[ \lim_{x \to \alpha} \frac{a^2(x - \alpha)^2(x - \beta)^2}{2(x - \alpha)^2} = \lim_{x \to \alpha} \frac{a^2(x - \beta)^2}{2} \] ### Step 7: Evaluate the Limit As \( x \to \alpha \), \( (x - \beta) \) approaches \( (\alpha - \beta) \): \[ \frac{a^2(\alpha - \beta)^2}{2} \] ### Final Result Thus, the limit evaluates to: \[ \frac{a^2(\alpha - \beta)^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of ax^2 + bx + c = 0, the equation whose roots are 2 + alpha, 2 + beta is

If alpha, beta are the roots of ax^(2) + bx + c = 0 then the equation with roots (1)/(aalpha+b), (1)/(abeta+b) is

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha, beta are the roots of x^(2) + bx-c = 0 , then the equation whose roots are b and c is

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta are the roots of ax^(2)+bx+c=0 , form the equation whose roots are (1)/(alpha) and (1)/(beta) .

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If sin alpha and cos alpha are the roots of ax^(2) + bx + c = 0 , then find the relation satisfied by a, b and c .

If alpha, beta are the roots of a x^2 + bx + c = 0 and k in R then the condition so that alpha < k < beta is :

Let alpha,beta,gamma be the roots of x^3+ax^2+bx+c=0 then find sum alpha^2beta+sumalphabeta^2 .

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |