Home
Class 12
MATHS
The value of lim(x to 0) ("sin" alpha X...

The value of `lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x))` equals

A

0

B

1

C

`-1`

D

`alpha - beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{\sin(\alpha x) - \sin(\beta x)}{e^{\alpha x} - e^{\beta x}}, \] we will follow these steps: ### Step 1: Rewrite the limit We can rewrite the limit by adding and subtracting 1 in the denominator: \[ \lim_{x \to 0} \frac{\sin(\alpha x) - \sin(\beta x)}{(e^{\alpha x} - 1) - (e^{\beta x} - 1)}. \] ### Step 2: Factor the denominator Now we can factor the denominator: \[ = \lim_{x \to 0} \frac{\sin(\alpha x) - \sin(\beta x)}{e^{\alpha x} - 1 - (e^{\beta x} - 1)}. \] ### Step 3: Divide numerator and denominator by \(x\) Next, we will divide both the numerator and denominator by \(x\): \[ = \lim_{x \to 0} \frac{\frac{\sin(\alpha x) - \sin(\beta x)}{x}}{\frac{e^{\alpha x} - 1}{x} - \frac{e^{\beta x} - 1}{x}}. \] ### Step 4: Apply limit properties Using the known limits: 1. \(\lim_{x \to 0} \frac{\sin(kx)}{x} = k\) for any constant \(k\), 2. \(\lim_{x \to 0} \frac{e^{kx} - 1}{x} = k\) for any constant \(k\), we can evaluate the limits: \[ = \frac{\alpha - \beta}{\alpha - \beta} = 1. \] ### Final Answer Thus, the value of the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) (e^("sin"^(3) x) - cos (("sin" x)^(3)))/(x^(3)) is ____

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

lim_(x to 0) (sin x^(@))/( x) is equal to

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals

int(dx)/(sin(x-alpha)sin(x-beta)

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

Let alpha,betainR be such that lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1 . Then 6(alpha+beta) equals___________.

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |