Home
Class 12
MATHS
The value of lim(x to 0) ((4^(x) - 1)^(...

The value of `lim_(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^(2))/(3)))` equals

A

`3 (log 4)^(3)`

B

`4 (log 4)^(3)`

C

`12 (log4)^(3)`

D

`15 (log4)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x)}{4} \log\left(1 + \frac{x^2}{3}\right)}, \] we can follow these steps: ### Step 1: Identify Basic Limits Recall the following basic limits: 1. \(\lim_{x \to 0} \frac{\sin x}{x} = 1\) 2. \(\lim_{x \to 0} \frac{a^x - 1}{x} = \log a\) 3. \(\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1\) ### Step 2: Rewrite the Limit We can rewrite the limit in a form that allows us to apply these basic limits. We start with the expression: \[ (4^x - 1)^3 \] Using the second basic limit, we can express \(4^x - 1\) as: \[ 4^x - 1 = 4^x - 1 = (4^x - 1) \cdot \frac{x}{x} = x \cdot \frac{4^x - 1}{x}. \] Thus, \[ (4^x - 1)^3 = \left(x \cdot \frac{4^x - 1}{x}\right)^3 = x^3 \left(\frac{4^x - 1}{x}\right)^3. \] ### Step 3: Rewrite the Denominator Now, for the denominator: \[ \frac{\sin(x)}{4} \log\left(1 + \frac{x^2}{3}\right) = \frac{1}{4} \sin(x) \cdot \log\left(1 + \frac{x^2}{3}\right). \] Using the first basic limit, we can express \(\sin(x)\) as: \[ \sin(x) = x \cdot \frac{\sin(x)}{x}. \] And for \(\log\left(1 + \frac{x^2}{3}\right)\): \[ \log\left(1 + \frac{x^2}{3}\right) = \frac{x^2}{3} \cdot \frac{\log\left(1 + \frac{x^2}{3}\right)}{\frac{x^2}{3}}. \] ### Step 4: Substitute Back into the Limit Now substituting these back into the limit gives: \[ \lim_{x \to 0} \frac{x^3 \left(\frac{4^x - 1}{x}\right)^3}{\frac{1}{4} \cdot x \cdot \frac{\sin(x)}{x} \cdot \frac{x^2}{3} \cdot \frac{\log\left(1 + \frac{x^2}{3}\right)}{\frac{x^2}{3}}}. \] ### Step 5: Simplify the Limit This simplifies to: \[ \lim_{x \to 0} \frac{4^x - 1}{x}^3 \cdot \frac{4}{\sin(x)} \cdot \frac{3}{x^2} \cdot \log\left(1 + \frac{x^2}{3}\right). \] ### Step 6: Evaluate the Limit Now we can evaluate each part: 1. \(\lim_{x \to 0} \frac{4^x - 1}{x} = \log 4\). 2. \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1\). 3. \(\lim_{x \to 0} \frac{\log\left(1 + \frac{x^2}{3}\right)}{\frac{x^2}{3}} = 1\). Putting it all together: \[ \lim_{x \to 0} \frac{(4^x - 1)^3}{\frac{\sin(x)}{4} \log\left(1 + \frac{x^2}{3}\right)} = \frac{(\log 4)^3}{\frac{1}{4} \cdot 1 \cdot 1} = 12 (\log 4)^3. \] ### Final Answer Thus, the value of the limit is: \[ 12 (\log 4)^3. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

Evaluate lim_(x to 0) ((x+4)/(2-x))^((x^(2)+2x-3)/(x-1))

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |