Home
Class 12
MATHS
If 0 lt alpha lt beta then lim(n to oo) ...

If `0 lt alpha lt beta` then `lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n))` is equal to

A

`alpha`

B

`beta`

C

`alpha beta`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} ( \beta^n + \alpha^n )^{\frac{1}{n}} \) where \( 0 < \alpha < \beta \), we can follow these steps: ### Step 1: Factor out \( \beta^n \) We start by factoring \( \beta^n \) out of the expression inside the limit: \[ \lim_{n \to \infty} ( \beta^n + \alpha^n )^{\frac{1}{n}} = \lim_{n \to \infty} \left( \beta^n \left( 1 + \left( \frac{\alpha}{\beta} \right)^n \right) \right)^{\frac{1}{n}} \] ### Step 2: Simplify the expression Using the property of exponents, we can simplify the expression: \[ = \lim_{n \to \infty} \left( \beta^n \right)^{\frac{1}{n}} \left( 1 + \left( \frac{\alpha}{\beta} \right)^n \right)^{\frac{1}{n}} \] This simplifies to: \[ = \lim_{n \to \infty} \beta \left( 1 + \left( \frac{\alpha}{\beta} \right)^n \right)^{\frac{1}{n}} \] ### Step 3: Analyze the term \( \left( \frac{\alpha}{\beta} \right)^n \) Since \( 0 < \alpha < \beta \), we have \( \frac{\alpha}{\beta} < 1 \). Therefore, as \( n \) approaches infinity, \( \left( \frac{\alpha}{\beta} \right)^n \) approaches 0: \[ \lim_{n \to \infty} \left( \frac{\alpha}{\beta} \right)^n = 0 \] ### Step 4: Substitute back into the limit Now substituting this back into our limit gives us: \[ = \lim_{n \to \infty} \beta \left( 1 + 0 \right)^{\frac{1}{n}} \] ### Step 5: Evaluate the limit As \( n \) approaches infinity, \( \left( 1 + 0 \right)^{\frac{1}{n}} \) approaches 1: \[ = \beta \cdot 1 = \beta \] ### Final Result Thus, the limit is: \[ \lim_{n \to \infty} ( \beta^n + \alpha^n )^{\frac{1}{n}} = \beta \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt beta lt (pi)/(2) then

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

80.The value of Lt_(n rarr oo)n^((1)/(n)) is equal to :

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

If 0lt xlty , then lim_(xrarroo) (y^n+x^n)^(1//n) is equal to

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

If 0 lt y lt 1 , then sum_(n=1)^(oo)(1)/(2n-1)*y^(n+1)=……

lim_(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ ) is equal to

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |