Home
Class 12
MATHS
lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x))...

`lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x))` is

A

2

B

4

C

8

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(2x)}{2 - \sqrt{4 - x}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin(2x)}{2 - \sqrt{4 - x}} \] ### Step 2: Rationalize the denominator To simplify the expression, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \lim_{x \to 0} \frac{\sin(2x)}{2 - \sqrt{4 - x}} \cdot \frac{2 + \sqrt{4 - x}}{2 + \sqrt{4 - x}} \] This gives us: \[ \lim_{x \to 0} \frac{\sin(2x)(2 + \sqrt{4 - x})}{(2 - \sqrt{4 - x})(2 + \sqrt{4 - x})} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (2 - \sqrt{4 - x})(2 + \sqrt{4 - x}) = 2^2 - (\sqrt{4 - x})^2 = 4 - (4 - x) = x \] So, we can rewrite our limit: \[ \lim_{x \to 0} \frac{\sin(2x)(2 + \sqrt{4 - x})}{x} \] ### Step 4: Separate the limit Now we can separate the limit into two parts: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} \cdot \lim_{x \to 0} (2 + \sqrt{4 - x}) \] ### Step 5: Evaluate the first limit Using the standard limit \( \lim_{x \to 0} \frac{\sin(kx)}{x} = k \) where \( k = 2 \): \[ \lim_{x \to 0} \frac{\sin(2x)}{x} = 2 \] ### Step 6: Evaluate the second limit Now evaluate the second limit: \[ \lim_{x \to 0} (2 + \sqrt{4 - x}) = 2 + \sqrt{4} = 2 + 2 = 4 \] ### Step 7: Combine the results Now we can combine the results from the two limits: \[ 2 \cdot 4 = 8 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin(2x)}{2 - \sqrt{4 - x}} = 8 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

lim_(x to 0) (sin^(2) x)/(sqrt(2)-sqrt(1+cos x))= (A) sqrt(2) (B) 2 (C) 4 (D) 4sqrt(2)

lim_(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

The value of lim_(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x)) is equal to

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

Eavaluate lim_(x to 0) (sin^(2)2x)/(sin^(2)4x)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(xrarr0) (sin 3 x)/(2x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |