Home
Class 12
MATHS
lim(x to 0) (1 - cos x)/(x sqrt(x^(2))...

`lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))`

A

`(1)/(2)`

B

`-(1)/(2)`

C

0

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos x}{x \sqrt{x^2}} \), we will follow these steps: ### Step 1: Rewrite the expression First, we can simplify the expression in the limit. We know that \( \sqrt{x^2} = |x| \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{1 - \cos x}{x |x|} \] ### Step 2: Consider the right-hand limit Next, we will find the right-hand limit as \( x \) approaches 0 from the positive side (\( x \to 0^+ \)). In this case, \( |x| = x \). Therefore, the limit becomes: \[ \lim_{x \to 0^+} \frac{1 - \cos x}{x^2} \] ### Step 3: Apply the trigonometric limit Using the known limit \( \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \), we can evaluate: \[ \lim_{x \to 0^+} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] ### Step 4: Consider the left-hand limit Now, we will find the left-hand limit as \( x \) approaches 0 from the negative side (\( x \to 0^- \)). In this case, \( |x| = -x \). Thus, the limit becomes: \[ \lim_{x \to 0^-} \frac{1 - \cos x}{x (-x)} = \lim_{x \to 0^-} \frac{1 - \cos x}{-x^2} \] ### Step 5: Apply the trigonometric limit again Using the same known limit: \[ \lim_{x \to 0^-} \frac{1 - \cos x}{-x^2} = -\frac{1}{2} \] ### Step 6: Compare the limits Now we have: - Right-hand limit (RHL): \( \frac{1}{2} \) - Left-hand limit (LHL): \( -\frac{1}{2} \) Since RHL \( \neq \) LHL, we conclude that the limit does not exist. ### Final Result Thus, we can state that: \[ \lim_{x \to 0} \frac{1 - \cos x}{x \sqrt{x^2}} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (cos x)/(pi-x)

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

Evaluate the following limits : Lim_(x to 0) (sin 2x (1- cos 2x))/(x^(3))

lim_(x to 0) (1 - cos 4x)/(1 - cos x) = _________

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x rarr0)(1-cos 2x)/(x^(2))

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  2. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  3. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  4. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  5. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  6. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  7. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  8. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |

  9. If {x} denotes the fractional part of x, then lim(x to 0) ({x})/(tan ...

    Text Solution

    |

  10. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  11. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  12. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  13. The value of lim(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) -...

    Text Solution

    |

  14. The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If 0 lt alpha lt beta then lim(n to oo) (beta^(n) + alpha^(n))^((1)/(n...

    Text Solution

    |

  17. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  18. lim(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

    Text Solution

    |

  19. lim(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

    Text Solution

    |

  20. lim(x to 0) (1 - cos x)/(x sqrt(x^(2))

    Text Solution

    |