Home
Class 12
MATHS
if z(1),z(2),z(3),…..z(n) are complex n...

if ` z_(1),z_(2),z_(3),…..z_(n)` are complex numbers such that ` |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1`
Then show that `|z_(1) +z_(2) +z_(3) +……+z_(n)|=1`

Text Solution

AI Generated Solution

To solve the problem, we need to show that if \( |z_1| = |z_2| = \ldots = |z_n| = |1/z_1 + 1/z_2 + \ldots + 1/z_n| = 1 \), then it follows that \( |z_1 + z_2 + \ldots + z_n| = 1 \). ### Step-by-Step Solution: 1. **Given Conditions**: We know that \( |z_1| = |z_2| = \ldots = |z_n| = 1 \). This means that each \( z_i \) lies on the unit circle in the complex plane. 2. **Expressing the Conjugates**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

Let z_(1),z_(2) and z_(3) be three complex number such that |z_(1)-1|= |z_(2) - 1| = |z_(3) -1| and arg ((z_(3) - z_(1))/(z_(2) -z_(1))) = (pi)/(6) then prove that z_(2)^(3) + z_(3)^(3) + 1 = z_(2) + z_(3) + z_(2)z_(3) .

Let z_(1),z_(2),z_(3),……z_(n) be the complex numbers such that |z_(1)|= |z_(2)| = …..=|z_(n)| = 1 . If z = (sum_(k=1)^(n)z_(k)) (sum_(k=1)^(n)(1)/(z_(k))) then prove that : z is a real number .

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to