Home
Class 12
MATHS
Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(1...

Evaluate ` 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25} \), we will use the properties of the imaginary unit \( i \), where \( i = \sqrt{-1} \) and the powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and so on...) ### Step-by-step Solution: 1. **Evaluate \( i^2 \)**: \[ i^2 = -1 \] Substitute into the expression: \[ 2i^2 = 2(-1) = -2 \] 2. **Evaluate \( i^3 \)**: \[ i^3 = -i \] Substitute into the expression: \[ 6i^3 = 6(-i) = -6i \] 3. **Evaluate \( i^{16} \)**: Since \( 16 \) is a multiple of \( 4 \): \[ i^{16} = (i^4)^4 = 1^4 = 1 \] Substitute into the expression: \[ 3i^{16} = 3(1) = 3 \] 4. **Evaluate \( i^{19} \)**: \( 19 \mod 4 = 3 \), so: \[ i^{19} = i^3 = -i \] Substitute into the expression: \[ -6i^{19} = -6(-i) = 6i \] 5. **Evaluate \( i^{25} \)**: \( 25 \mod 4 = 1 \), so: \[ i^{25} = i^1 = i \] Substitute into the expression: \[ 4i^{25} = 4(i) = 4i \] 6. **Combine all the terms**: Now, we combine all the evaluated terms: \[ -2 - 6i + 3 + 6i + 4i \] Combine the real parts: \[ -2 + 3 = 1 \] Combine the imaginary parts: \[ -6i + 6i + 4i = 4i \] Therefore, the final result is: \[ 1 + 4i \] ### Final Answer: \[ 1 + 4i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate (4+5i)(2-3i)

Evaluate (2+3i)(4-5i).

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Evaluate : [i^(18)+(1/i)^(25)]^3

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

Evaluate: [i^(18) + ((1)/(i))^(25)]^(3)

Evaluate: [i^19+(1/i)^25]^2

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Evaluate: (i^2+i^4+i^6+i^7)/(1+i^2+i^3)

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Try Yourself
  1. Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

    Text Solution

    |

  2. Evaluate [ i^(14) - (1/i)^(34)]^2

    Text Solution

    |

  3. Plot the complex number -4 + 5i on the Argand plane.

    Text Solution

    |

  4. Plot the complex number -3 + 7i on the Argand plane.

    Text Solution

    |

  5. Write the complex number represented by the point (-2,5)

    Text Solution

    |

  6. Write the complex number represented by the point (-6,-7)

    Text Solution

    |

  7. Find the values of x and y , if (3y -2) + (5 -4x)i=0 , where , x y i...

    Text Solution

    |

  8. Find the values of x and y , if x + 4yi = ix + y + 3 where x ,y in ...

    Text Solution

    |

  9. If z(1) = 4 -I and z(2) = - 3 + 7i then find (i) z(1) +z(2) (...

    Text Solution

    |

  10. If z(1) = 6 + 9i and z(2) = 5 + 2i then find z(1)/z(2)

    Text Solution

    |

  11. if z1= 1 +i, z(2)= 2 -3i and z(3) = 5+ 2i then find z(1)-z(2)+3z(3)

    Text Solution

    |

  12. if z(1)=2+3i, z(2)=1-iand z(3) = 3+ 4i,then find z(1)z(2) +z(3)

    Text Solution

    |

  13. if z(1) =-1 + 3i and z(2)= 2 + i then find 2(z(1) +z(2))

    Text Solution

    |

  14. find the multiplicative inverse of the complex number 2 + 9i .

    Text Solution

    |

  15. Express ( 4 - 5/2 i)^(2) in the form of a + ib.

    Text Solution

    |

  16. Express (1 -i)^(4) in the form of a +ib.

    Text Solution

    |

  17. Express ( 1/3 + 4/3 i)^(2) in the form of a + ib.

    Text Solution

    |

  18. if z(1) = 3i and z(2) =1 + 2i , then find z(1)z(2) -z(1)

    Text Solution

    |

  19. Express 1/(1+cos theta-i sin theta) in the form of a +ib.

    Text Solution

    |

  20. Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

    Text Solution

    |