Home
Class 12
MATHS
Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(1...

Evaluate ` 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25} \), we will use the properties of the imaginary unit \( i \), where \( i = \sqrt{-1} \) and the powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and so on...) ### Step-by-step Solution: 1. **Evaluate \( i^2 \)**: \[ i^2 = -1 \] Substitute into the expression: \[ 2i^2 = 2(-1) = -2 \] 2. **Evaluate \( i^3 \)**: \[ i^3 = -i \] Substitute into the expression: \[ 6i^3 = 6(-i) = -6i \] 3. **Evaluate \( i^{16} \)**: Since \( 16 \) is a multiple of \( 4 \): \[ i^{16} = (i^4)^4 = 1^4 = 1 \] Substitute into the expression: \[ 3i^{16} = 3(1) = 3 \] 4. **Evaluate \( i^{19} \)**: \( 19 \mod 4 = 3 \), so: \[ i^{19} = i^3 = -i \] Substitute into the expression: \[ -6i^{19} = -6(-i) = 6i \] 5. **Evaluate \( i^{25} \)**: \( 25 \mod 4 = 1 \), so: \[ i^{25} = i^1 = i \] Substitute into the expression: \[ 4i^{25} = 4(i) = 4i \] 6. **Combine all the terms**: Now, we combine all the evaluated terms: \[ -2 - 6i + 3 + 6i + 4i \] Combine the real parts: \[ -2 + 3 = 1 \] Combine the imaginary parts: \[ -6i + 6i + 4i = 4i \] Therefore, the final result is: \[ 1 + 4i \] ### Final Answer: \[ 1 + 4i \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate (4+5i)(2-3i)

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

Knowledge Check

  • Evaluate (2+3i)(4-5i).

    A
    `-7-23i`
    B
    `-7+2i`
    C
    `23-7i`
    D
    `23+2i`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : [i^(18)+(1/i)^(25)]^3

    Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

    Evaluate: [i^(18) + ((1)/(i))^(25)]^(3)

    Evaluate: [i^19+(1/i)^25]^2

    Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

    If the correct form of 2i^(4) + 4i^(3) - i^(2) + 3i is a + ib , where the imaginary number I is such that i^(2) = - 1 . What is the value of ( a+b) ?

    Evaluate: (i^2+i^4+i^6+i^7)/(1+i^2+i^3)