Home
Class 12
MATHS
Show that there is no complex number suc...

Show that there is no complex number such that
`|z|le1/2 and z^(n)sin theta_(0)+z^(n-1)sintheta_(2)+....+zsintheta_(n-1)+ sintheta_(n)=2`
where `theta,theta_(1),theta_(2),……,theta_(n-1), theta_(n)` are reals and ` n in Z^(+)` .

Text Solution

AI Generated Solution

To show that there is no complex number \( z \) such that \( |z| \leq \frac{1}{2} \) and \[ z^n \sin \theta_0 + z^{n-1} \sin \theta_1 + \ldots + z \sin \theta_{n-1} + \sin \theta_n = 2 \] where \( \theta, \theta_1, \theta_2, \ldots, \theta_n \) are real numbers and \( n \in \mathbb{Z}^+ \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to

Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

If sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0 , then find the minimum value of costheta_1+costheta_2+...+costheta_n .

zo is one of the roots of the equation z^n cos theta_0+ z^(n-1) cos theta_2 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2 , where theta in R , then (A) |z_0| lt 1/2 (B) |z_0| gt 1/2 (C) |z_0| = 1/2 (D)None of these

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

Prove that sin^2 theta+sin^2 2theta+sin^2 3theta+....+sin^2 n theta=n/2-(sin n theta cos(n+1)theta)/(2sin theta)

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

Statement-1: sin (pi+theta)=-sin theta Statement-2: sin(npi+theta)=(-1)^(n) sin theta , n in N .