Home
Class 12
MATHS
If the ratio (z-i)/(z-1) is purely imagi...

If the ratio `(z-i)/(z-1)` is purely imaginary, prove that the point z lies on the circle whose centre is the point `(1)/(2) (1+i)` and radius is `(1)/(sqrt2)`

Text Solution

Verified by Experts

we have , `(z-i)/(z-1)` is purely imaginary
`Rightarrow (z-i)/(z -1)+ (barz+i)/(barz-1)= 0`
` Rightarrow zbarz-z-bar(iz) + i+zbarz +iz -barz-i =0`
`Rightarrow 2zbarz+ ( -1 +i) z(-1-i)barz=0`
` Rightarrow zbarz - ((1-i)/2) z- ((1 + i)/2) barz =0`
which represents a circle centred at `((1+i)/2)` and radius ` = sqrt(alpha baralpha-c) = sqrt(((1+i))/2((1-i))/2) = 1/sqrt2`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If the ratio (1-z)/(1+z) is pyrely imaginary, then

If (z+1)/(z+i) is a purely imaginary number (where (i=sqrt(-1) ), then z lies on a

If z lies on the circle I z l = 1, then 2/z lies on

If (z-1)/(z+1) is a purely imaginary number (z ne - 1) , then find the value of |z| .

If z lies on the circle |z-1|=1 , then (z-2)/z is

If z lies on the circle |z-1|=1 , then (z-2)/z is

If |z|=1 , then prove that (z-1)/(z+1) (z ne -1) is a purely imaginary number. What is the conclusion if z=1?

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |(z+i)/(z-i)|=sqrt(3) , then z lies on a circle whose radius, is

The triangle with vertices at the point z_1z_2,(1-i)z_1+i z_2 is