Home
Class 12
MATHS
if z = 2 + i + 4i^(2) -6i^(3) then veri...

if ` z = 2 + i + 4i^(2) -6i^(3)` then verify that
(i) ` (bar(z^(2)) = (barz)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To verify that \( \overline{z^2} = \overline{z}^2 \) for the complex number \( z = 2 + i + 4i^2 - 6i^3 \), we will follow these steps: ### Step 1: Simplify \( z \) Given: \[ z = 2 + i + 4i^2 - 6i^3 \] We know: - \( i^2 = -1 \) - \( i^3 = -i \) Substituting these values into \( z \): \[ z = 2 + i + 4(-1) - 6(-i) \] \[ = 2 + i - 4 + 6i \] \[ = (2 - 4) + (1 + 6)i \] \[ = -2 + 7i \] ### Step 2: Calculate \( z^2 \) Now, we need to find \( z^2 \): \[ z^2 = (-2 + 7i)(-2 + 7i) \] Using the formula \( (a + b)(a + b) = a^2 + 2ab + b^2 \): \[ = (-2)^2 + 2(-2)(7i) + (7i)^2 \] \[ = 4 - 28i + 49i^2 \] Since \( i^2 = -1 \): \[ = 4 - 28i - 49 \] \[ = -45 - 28i \] ### Step 3: Find \( \overline{z^2} \) The complex conjugate of \( z^2 \) is: \[ \overline{z^2} = \overline{-45 - 28i} = -45 + 28i \] ### Step 4: Find \( \overline{z} \) Now, we find the complex conjugate of \( z \): \[ \overline{z} = \overline{-2 + 7i} = -2 - 7i \] ### Step 5: Calculate \( \overline{z}^2 \) Now, we need to calculate \( \overline{z}^2 \): \[ \overline{z}^2 = (-2 - 7i)(-2 - 7i) \] Using the same formula: \[ = (-2)^2 + 2(-2)(-7i) + (-7i)^2 \] \[ = 4 + 28i + 49i^2 \] Substituting \( i^2 = -1 \): \[ = 4 + 28i - 49 \] \[ = -45 + 28i \] ### Step 6: Verify the equality Now we compare \( \overline{z^2} \) and \( \overline{z}^2 \): \[ \overline{z^2} = -45 + 28i \] \[ \overline{z}^2 = -45 + 28i \] Thus, we have: \[ \overline{z^2} = \overline{z}^2 \] ### Conclusion We have verified that \( \overline{z^2} = \overline{z}^2 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z=4 + 3i , then verify that z^(-1)= (bar(z))/(|z|^(2))

If z= 6+8i , verify that z^(-1)= (bar(z))/(|z|^(2))

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

if z = 3+i+9i^(2) -6i^(3) " then " (bar(z^(-1))) is

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1)^(2)| = |z_(2)|^(2)

If z=4 + 3i , then verify that |z|= |bar(z)|

If z= 6+8i , verify that |z|= |bar(z)|

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)z_(2)|= |z_(1)||z_(2)|

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Try Yourself
  1. Mutiply ( 5 +2i) by its conjugate.

    Text Solution

    |

  2. Find the conjugate of ((1-2i)^(2))/(2 + i)

    Text Solution

    |

  3. if z = 2 + i + 4i^(2) -6i^(3) then verify that (i) (bar(z^(2)) = (...

    Text Solution

    |

  4. if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - bar...

    Text Solution

    |

  5. if z(1) = 3-i and z(2) = -3 +i, then find Re ((z(1)z(2))/(barz(1))...

    Text Solution

    |

  6. Let z(1)=2-i and z(2)=2+i, then "Im"((1)/(z(1)z(2))) is

    Text Solution

    |

  7. Find real values of x and y for which the complex numbers 7 + ix^(2)y...

    Text Solution

    |

  8. Find real number x and y if (x-iy)(4 + 7i) is the conjugate of 29-2i.

    Text Solution

    |

  9. Find the conjugate of (sqrt2 -isqrt2)/(2sqrt5-isqrt2)

    Text Solution

    |

  10. If ((a+i)^2)/((2a-i))=p+i q , show that: p^2+q^2=((a^2+1)^2)/((4a^2+1)...

    Text Solution

    |

  11. Represent the modulus of 3+4i in the Argand plane.

    Text Solution

    |

  12. Represent the modulus of 1+i, in the Argand plane.

    Text Solution

    |

  13. Find the modulus of (2 -3i)/( 4+i)

    Text Solution

    |

  14. Find the modulus of ((3+2i)^(2))/(4-3i)

    Text Solution

    |

  15. If z(1)=5+2i and z(2)=2 +i ,verify (i) |z(1)z(2)|= |z(1)||z(2)|

    Text Solution

    |

  16. if z(1) =2+3i and z(2) = 1+i then find, |z(1)+z(2)|

    Text Solution

    |

  17. Find the modulus and argument of -4i.

    Text Solution

    |

  18. Find the modulus and argument of -3.

    Text Solution

    |

  19. Convert the complex number (1+i)/(1-i) in the polar form

    Text Solution

    |

  20. Convert the complex number 4/(1-isqrt3) in the polar form.

    Text Solution

    |