Home
Class 12
MATHS
Find the modulus of (2 -3i)/( 4+i)...

Find the modulus of ` (2 -3i)/( 4+i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( \frac{2 - 3i}{4 + i} \), we can follow these steps: ### Step 1: Use the property of modulus We know that the modulus of a quotient of complex numbers can be expressed as the quotient of their moduli: \[ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \] In our case, \( z_1 = 2 - 3i \) and \( z_2 = 4 + i \). Therefore, we can write: \[ \left| \frac{2 - 3i}{4 + i} \right| = \frac{|2 - 3i|}{|4 + i|} \] ### Step 2: Calculate the modulus of \( z_1 = 2 - 3i \) The modulus of a complex number \( a + bi \) is given by: \[ |a + bi| = \sqrt{a^2 + b^2} \] For \( z_1 = 2 - 3i \): - \( a = 2 \) - \( b = -3 \) Calculating the modulus: \[ |2 - 3i| = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] ### Step 3: Calculate the modulus of \( z_2 = 4 + i \) For \( z_2 = 4 + i \): - \( a = 4 \) - \( b = 1 \) Calculating the modulus: \[ |4 + i| = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \] ### Step 4: Substitute back into the modulus expression Now substituting the moduli back into our expression: \[ \left| \frac{2 - 3i}{4 + i} \right| = \frac{|2 - 3i|}{|4 + i|} = \frac{\sqrt{13}}{\sqrt{17}} \] ### Step 5: Final answer Thus, the modulus of \( \frac{2 - 3i}{4 + i} \) is: \[ \frac{\sqrt{13}}{\sqrt{17}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of 8-6i^(7) ?

Find the modulus of ((3+2i)^(2))/(4-3i)

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

The modulus of ((2+3i)^(2))/(2+i) is

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find modulus of (i) (2+4i)/(2-6i)

The modulus of (1+i)(3+4i)=