Home
Class 12
MATHS
Find the modulus of ((3+2i)^(2))/(4-3i)...

Find the modulus of ` ((3+2i)^(2))/(4-3i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of \(\frac{(3 + 2i)^2}{4 - 3i}\), we can follow these steps: ### Step 1: Use the property of modulus We know that the modulus of a quotient of two complex numbers can be expressed as: \[ \left| \frac{Z_1}{Z_2} \right| = \frac{|Z_1|}{|Z_2|} \] Thus, we can rewrite the expression: \[ \left| \frac{(3 + 2i)^2}{4 - 3i} \right| = \frac{|(3 + 2i)^2|}{|4 - 3i|} \] ### Step 2: Calculate the modulus of \(3 + 2i\) The modulus of a complex number \(a + bi\) is given by: \[ |a + bi| = \sqrt{a^2 + b^2} \] For \(3 + 2i\): \[ |3 + 2i| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} \] ### Step 3: Calculate the modulus of \((3 + 2i)^2\) Using the property of modulus: \[ |(3 + 2i)^2| = |3 + 2i|^2 = (\sqrt{13})^2 = 13 \] ### Step 4: Calculate the modulus of \(4 - 3i\) For \(4 - 3i\): \[ |4 - 3i| = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] ### Step 5: Combine the results Now we can substitute the moduli back into our expression: \[ \left| \frac{(3 + 2i)^2}{4 - 3i} \right| = \frac{|(3 + 2i)^2|}{|4 - 3i|} = \frac{13}{5} \] ### Final Answer Thus, the modulus of \(\frac{(3 + 2i)^2}{4 - 3i}\) is: \[ \frac{13}{5} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

The modulus of ((2+3i)^(2))/(2+i) is

Find the modulus of (2 -3i)/( 4+i)

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))

Find modulus of (i) (2+4i)/(2-6i)

The modulus of (1+i)(3+4i)=

Find the modulus of (1-i)^(-2) + (1+ i)^(-2)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .

The modulus of ((1+2i)(3-4i))/((4+3i)(2-3i)) is