Home
Class 12
MATHS
Convert the complex number (1+i)/(1-i) ...

Convert the complex number ` (1+i)/(1-i)` in the polar form

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \( \frac{1+i}{1-i} \) into polar form, we will follow these steps: ### Step 1: Rationalize the complex number Multiply the numerator and the denominator by the conjugate of the denominator. \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] ### Step 2: Simplify the numerator Using the formula \( (a+b)^2 = a^2 + 2ab + b^2 \): \[ (1+i)(1+i) = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i \] ### Step 3: Simplify the denominator Using the difference of squares formula \( (a-b)(a+b) = a^2 - b^2 \): \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] ### Step 4: Combine the results Now we can combine the simplified numerator and denominator: \[ \frac{2i}{2} = i \] ### Step 5: Convert to polar form The polar form of a complex number \( z = r(\cos \theta + i \sin \theta) \) requires finding the modulus \( r \) and the argument \( \theta \). 1. **Modulus \( r \)**: \[ r = |i| = 1 \] 2. **Argument \( \theta \)**: Since \( i \) lies on the positive imaginary axis, the angle \( \theta \) is: \[ \theta = \frac{\pi}{2} \] ### Step 6: Write in polar form Now substituting \( r \) and \( \theta \) into the polar form: \[ i = 1 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) \] Thus, the polar form of the complex number \( \frac{1+i}{1-i} \) is: \[ 1 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) \] ### Final Answer: The polar form of the complex number \( \frac{1+i}{1-i} \) is: \[ 1 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number 4/(1-isqrt3) in the polar form.

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert the complex number (1+isqrt(3)) into polar form.

Convert (1+3i)/(1-2i) into the polar form.

Represent the complex number z = 1 +isqrt(3) in the polar form.

Represent the complex number -2i in the polar form.

Represent the complex numbers (1+7i)/((2-i)^(2)) in polar form

Convert of the complex number in the polar form: sqrt(3)+i

Convert of the complex number in the polar form: -1 + i