Home
Class 12
MATHS
Convert the complex number 4/(1-isqrt3) ...

Convert the complex number `4/(1-isqrt3)` in the polar form.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \( \frac{4}{1 - i\sqrt{3}} \) into polar form, we will follow these steps: ### Step 1: Rationalize the Complex Number We will multiply the numerator and the denominator by the conjugate of the denominator, which is \( 1 + i\sqrt{3} \). \[ \frac{4}{1 - i\sqrt{3}} \cdot \frac{1 + i\sqrt{3}}{1 + i\sqrt{3}} = \frac{4(1 + i\sqrt{3})}{(1 - i\sqrt{3})(1 + i\sqrt{3})} \] ### Step 2: Simplify the Denominator Using the difference of squares formula, we can simplify the denominator: \[ (1 - i\sqrt{3})(1 + i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 3: Simplify the Numerator Now, we simplify the numerator: \[ 4(1 + i\sqrt{3}) = 4 + 4i\sqrt{3} \] ### Step 4: Combine the Results Putting it all together, we have: \[ \frac{4 + 4i\sqrt{3}}{4} = 1 + i\sqrt{3} \] ### Step 5: Find the Modulus \( r \) The modulus \( r \) of the complex number \( 1 + i\sqrt{3} \) is calculated as follows: \[ r = |z| = \sqrt{x^2 + y^2} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 6: Find the Argument \( \theta \) The argument \( \theta \) can be found using: \[ \tan(\theta) = \frac{y}{x} = \frac{\sqrt{3}}{1} \] Thus, \[ \theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \text{ radians (or } 60^\circ\text{)} \] ### Step 7: Write in Polar Form The polar form of a complex number is given by: \[ r(\cos \theta + i \sin \theta) \] Substituting the values of \( r \) and \( \theta \): \[ 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \] ### Final Result Thus, the polar form of the complex number \( \frac{4}{1 - i\sqrt{3}} \) is: \[ 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number (1+isqrt(3)) into polar form.

Convert the complex number (1+i)/(1-i) in the polar form

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Represent the complex number z = 1 +isqrt(3) in the polar form.

Represent the complex number -2i in the polar form.

Represent the complex numbers z= 1 + sqrt3i into polar form

Convert of the complex number in the polar form: sqrt(3)+i

Convert of the complex number in the polar form: -1 + i

Convert of the complex number in the polar form: -1-i