Home
Class 12
MATHS
If z = x + iy and arg((z-2)/(z+2))=pi/6,...

If `z = x + iy` and arg`((z-2)/(z+2))=pi/6,` then find the locus of `z.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the complex number \( z = x + iy \) given that \( \arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{6} \), we can follow these steps: ### Step 1: Express the argument condition Using the property of arguments, we know that: \[ \arg\left(\frac{a}{b}\right) = \arg(a) - \arg(b) \] Thus, we can rewrite the given condition: \[ \arg(z - 2) - \arg(z + 2) = \frac{\pi}{6} \] ### Step 2: Substitute \( z \) Substituting \( z = x + iy \): \[ \arg((x - 2) + iy) - \arg((x + 2) + iy) = \frac{\pi}{6} \] ### Step 3: Use the formula for the argument The argument of a complex number \( a + ib \) is given by \( \tan^{-1}\left(\frac{b}{a}\right) \). Therefore, we can express the arguments as: \[ \tan^{-1}\left(\frac{y}{x - 2}\right) - \tan^{-1}\left(\frac{y}{x + 2}\right) = \frac{\pi}{6} \] ### Step 4: Use the tangent subtraction formula Using the tangent subtraction formula: \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left(\frac{A - B}{1 + AB}\right) \] Let \( A = \frac{y}{x - 2} \) and \( B = \frac{y}{x + 2} \). Then we have: \[ \tan^{-1}\left(\frac{\frac{y}{x - 2} - \frac{y}{x + 2}}{1 + \frac{y}{x - 2} \cdot \frac{y}{x + 2}}\right) = \frac{\pi}{6} \] ### Step 5: Simplify the expression Calculating \( A - B \): \[ \frac{y}{x - 2} - \frac{y}{x + 2} = y \left(\frac{(x + 2) - (x - 2)}{(x - 2)(x + 2)}\right) = y \left(\frac{4}{(x - 2)(x + 2)}\right) \] Thus, \[ A - B = \frac{4y}{(x - 2)(x + 2)} \] Now calculating \( 1 + AB \): \[ 1 + \frac{y^2}{(x - 2)(x + 2)} = 1 + \frac{y^2}{x^2 - 4} \] ### Step 6: Set up the equation Now we have: \[ \tan^{-1}\left(\frac{\frac{4y}{(x - 2)(x + 2)}}{1 + \frac{y^2}{x^2 - 4}}\right) = \frac{\pi}{6} \] Taking the tangent of both sides gives: \[ \frac{4y}{(x - 2)(x + 2) \left(1 + \frac{y^2}{x^2 - 4}\right)} = \frac{1}{\sqrt{3}} \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ 4y \sqrt{3} = (x^2 - 4)(x - 2)(x + 2) + y^2 \] This simplifies to: \[ 4y \sqrt{3} = (x^2 - 4)(x^2 - 4) + y^2 \] ### Step 8: Rearranging to find the locus Rearranging gives: \[ x^2 + y^2 - 4\sqrt{3}y - 4 = 0 \] This represents a circle. ### Conclusion The locus of \( z \) is a circle.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If arg(z_(1))=(2pi)/3 and arg(z_(2))=pi/2 , then find the principal value of arg(z_(1)z_(2)) and also find the quardrant of z_(1)z_(2) .

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

Statement-1: If z_(1),z_(2) are affixes of two fixed points A and B in the Argand plane and P(z) is a variable point such that "arg" (z-z_(1))/(z-z_(2))=pi/2 , then the locus of z is a circle having z_(1) and z_(2) as the end-points of a diameter. Statement-2 : arg (z_(2)-z_(1))/(z_(1)-z) = angleAPB

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

If arg ((z-6-3i)/(z-3-6i))=pi/4 , then maximum value of |z| :

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If the amplitude of z-2-3i " is " (pi)/(4) , then find the locus of z= x+ yi

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then