Home
Class 12
MATHS
If z=(1+i)/sqrt2 , then the value of z...

If `z=(1+i)/sqrt2` , then the value of `z^1929` is

A

1+i

B

`-1`

C

`(1+i)/2`

D

`(1+i)/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( z^{1929} \) where \( z = \frac{1+i}{\sqrt{2}} \). ### Step-by-Step Solution: 1. **Express \( z \) in terms of its components**: \[ z = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \] 2. **Recognize the trigonometric form**: We can express \( \frac{1}{\sqrt{2}} \) and \( \frac{i}{\sqrt{2}} \) in terms of cosine and sine. We know: \[ \frac{1}{\sqrt{2}} = \cos\left(\frac{\pi}{4}\right) \quad \text{and} \quad \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right) \] Thus, we can rewrite \( z \) as: \[ z = \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \] 3. **Convert to exponential form**: Using Euler's formula, we can express \( z \) as: \[ z = e^{i \frac{\pi}{4}} \] 4. **Raise \( z \) to the power of 1929**: \[ z^{1929} = \left(e^{i \frac{\pi}{4}}\right)^{1929} = e^{i \frac{1929 \pi}{4}} \] 5. **Simplify the exponent**: To simplify \( \frac{1929 \pi}{4} \), we divide 1929 by 4: \[ 1929 \div 4 = 482 \quad \text{remainder } 1 \] Thus, \[ 1929 = 4 \times 482 + 1 \] Therefore, \[ \frac{1929 \pi}{4} = 482 \pi + \frac{\pi}{4} \] 6. **Use periodicity of sine and cosine**: Since \( e^{i \theta} \) has a period of \( 2\pi \), we can reduce \( 482 \pi \): \[ e^{i(482 \pi + \frac{\pi}{4})} = e^{i \frac{\pi}{4}} \quad (\text{because } 482 \text{ is even, } e^{i 2k\pi} = 1) \] 7. **Final result**: Thus, we have: \[ z^{1929} = e^{i \frac{\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} = z \] ### Conclusion: The value of \( z^{1929} \) is: \[ \frac{1+i}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If |z +1| = z + 2(1 - i) , then the value of z

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(1)/(2)(sqrt(3)-i) , then the least possible integral value of m such that (z^(101)+i^(109))^(106)=z^(m+1) is

If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3)+""1 (2) sqrt(5)+""1 (3) 2 (4) 2""+sqrt(2)