Home
Class 12
MATHS
(sqrt(-3))(sqrt(-5)) is equal to...

` (sqrt(-3))(sqrt(-5))` is equal to

A

`sqrt15`

B

`-sqrt15`

C

`isqrt15`

D

`sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{-3} \cdot \sqrt{-5} \), we can follow these steps: ### Step 1: Rewrite the square roots We start by rewriting the square roots of negative numbers using the imaginary unit \( i \), where \( i = \sqrt{-1} \). \[ \sqrt{-3} = \sqrt{3} \cdot \sqrt{-1} = \sqrt{3} \cdot i \] \[ \sqrt{-5} = \sqrt{5} \cdot \sqrt{-1} = \sqrt{5} \cdot i \] ### Step 2: Substitute back into the expression Now we substitute these expressions back into the original product: \[ \sqrt{-3} \cdot \sqrt{-5} = (\sqrt{3} \cdot i) \cdot (\sqrt{5} \cdot i) \] ### Step 3: Simplify the expression Next, we can simplify the product: \[ = \sqrt{3} \cdot \sqrt{5} \cdot i \cdot i \] ### Step 4: Calculate \( i \cdot i \) Recall that \( i \cdot i = i^2 = -1 \): \[ = \sqrt{3} \cdot \sqrt{5} \cdot (-1) \] ### Step 5: Combine the square roots Now we can combine the square roots: \[ = -(\sqrt{3 \cdot 5}) = -\sqrt{15} \] ### Final Result Thus, the final result is: \[ \sqrt{-3} \cdot \sqrt{-5} = -\sqrt{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

(sqrt(-2))(sqrt(-3)) is equal to A. sqrt(6) B. -sqrt(6) C. isqrt(6) D. none of these

(3-sqrt(-16))/(1-sqrt(-25)) is equal to

(sqrt(3)-1/(sqrt(3)))^2 is equal to

(sqrt5 - sqrt3)/(sqrt5 + sqrt3) is equal to :

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5))/(81) then k=

sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5))/(81) then k=

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

lim_(xrarr5)(sqrt(x+5)-sqrt(x-5))/(x+5) is equal to