Home
Class 12
MATHS
the value of ((i^(11)+i^(12)+i^(13)+i^(...

the value of `((i^(11)+i^(12)+i^(13)+i^(14) +i^(15)))/((1+i))`is

A

`(-(1+i))/2`

B

`((1-i))/2`

C

` ((1+i))/2`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{i^{11} + i^{12} + i^{13} + i^{14} + i^{15}}{1 + i}\), we will follow these steps: ### Step 1: Simplify the powers of \(i\) Recall that the powers of \(i\) cycle every 4 terms: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) Using this, we can simplify each term in the numerator: - \(i^{11} = i^{4 \cdot 2 + 3} = i^3 = -i\) - \(i^{12} = i^{4 \cdot 3} = 1\) - \(i^{13} = i^{4 \cdot 3 + 1} = i^1 = i\) - \(i^{14} = i^{4 \cdot 3 + 2} = i^2 = -1\) - \(i^{15} = i^{4 \cdot 3 + 3} = i^3 = -i\) ### Step 2: Substitute the simplified values into the expression Now substitute these values back into the expression: \[ i^{11} + i^{12} + i^{13} + i^{14} + i^{15} = (-i) + 1 + i + (-1) + (-i) \] ### Step 3: Combine like terms Now, combine the terms: \[ (-i + i - i) + (1 - 1) = -i + 0 = -i \] ### Step 4: Write the expression with the simplified numerator Now we have: \[ \frac{-i}{1 + i} \] ### Step 5: Rationalize the denominator To simplify \(\frac{-i}{1 + i}\), we multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 - i\): \[ \frac{-i(1 - i)}{(1 + i)(1 - i)} \] Calculating the denominator: \[ (1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 2 \] Calculating the numerator: \[ -i(1 - i) = -i + i^2 = -i - 1 \] So we have: \[ \frac{-1 - i}{2} \] ### Step 6: Write the final expression Thus, we can express the final result as: \[ \frac{-1}{2} - \frac{i}{2} \] This can also be written as: \[ \frac{1 - i}{2} \] ### Final Answer The value of the expression is: \[ \frac{1 - i}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Find the value of i^(12)+i^(13)+i^(14)+i^(15)

i^(14)+i^(15)+i^(16)+i^(17)=

The value of i^(i) , is

The value of 1+(1+i)+(1+i^2) +(1+i^3) =

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of i + i^(2) + i^(3) + i^(4) is ________

The value of (1+i)^4+(1-i)^4 is

The value of i^n + i^-n

(1) The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is