Home
Class 12
MATHS
(2/(1-i) + 3/(1+i))((2+3i)/(4+5i))is equ...

`(2/(1-i) + 3/(1+i))((2+3i)/(4+5i))`is equal to

A

` -117/82 - 13/82 i`

B

`-117/82 + 13/82 i`

C

`117/82 - (13i)/82`

D

`117/82 + ( 13i)/82 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2/(1-i) + 3/(1+i))((2+3i)/(4+5i))\), we will follow these steps: ### Step 1: Simplify the first part \((2/(1-i) + 3/(1+i))\) 1. Find a common denominator for the fractions: \[ \text{LCM of } (1-i) \text{ and } (1+i) = (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] 2. Rewrite the fractions: \[ \frac{2}{1-i} + \frac{3}{1+i} = \frac{2(1+i) + 3(1-i)}{2} \] 3. Expand the numerator: \[ = \frac{(2 + 2i) + (3 - 3i)}{2} = \frac{5 - i}{2} \] ### Step 2: Simplify the second part \((2+3i)/(4+5i)\) 1. Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{2+3i}{4+5i} \cdot \frac{4-5i}{4-5i} = \frac{(2+3i)(4-5i)}{(4+5i)(4-5i)} \] 2. Calculate the denominator: \[ (4+5i)(4-5i) = 16 - 25(-1) = 16 + 25 = 41 \] 3. Calculate the numerator: \[ (2+3i)(4-5i) = 8 - 10i + 12i - 15i^2 = 8 + 15 + 2i = 23 + 2i \] 4. So, we have: \[ \frac{2+3i}{4+5i} = \frac{23 + 2i}{41} \] ### Step 3: Combine the two parts Now we need to multiply the results from Step 1 and Step 2: \[ \left(\frac{5 - i}{2}\right) \cdot \left(\frac{23 + 2i}{41}\right) \] 1. Multiply the numerators: \[ (5 - i)(23 + 2i) = 115 + 10i - 23i - 2i^2 = 115 - 13i + 2 = 117 - 13i \] 2. Multiply the denominators: \[ 2 \cdot 41 = 82 \] 3. Thus, we have: \[ \frac{117 - 13i}{82} \] ### Final Answer The final result is: \[ \frac{117}{82} - \frac{13}{82}i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

(1+2i)/(1+3i) is equal to

((1+i)^(3))/(2+i) is equal to

Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

(4+3i) +(7-4i)-(3+5i)+i^(25) is equal to

Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i)) to the standard form.

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

Prove that [((3+2i)/(2-5i))+ ((3-2i)/(2+5i))] is rational

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real

Express the following in the standard form a+i b :(1/(1-2i)+3/(1+i))((3+4i)/(2-4i))