Home
Class 12
MATHS
The conjugate of ((1+2i)^(2))/(3-i) is...

The conjugate of ` ((1+2i)^(2))/(3-i)` is

A

`(-13)/10 + 9/10 i`

B

`(-13)/10 - 9/10 i`

C

`13/10 + 9/10 i`

D

`13/10 - 9/10i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the conjugate of the expression \(\frac{(1 + 2i)^2}{3 - i}\), we will follow these steps: ### Step 1: Simplify the numerator First, we need to simplify the numerator \((1 + 2i)^2\). Using the formula \((a + b)^2 = a^2 + 2ab + b^2\): \[ (1 + 2i)^2 = 1^2 + 2 \cdot 1 \cdot 2i + (2i)^2 \] Calculating each term: - \(1^2 = 1\) - \(2 \cdot 1 \cdot 2i = 4i\) - \((2i)^2 = 4i^2 = 4(-1) = -4\) Combining these: \[ (1 + 2i)^2 = 1 + 4i - 4 = -3 + 4i \] ### Step 2: Rewrite the expression Now we can rewrite the original expression: \[ \frac{(1 + 2i)^2}{3 - i} = \frac{-3 + 4i}{3 - i} \] ### Step 3: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator, which is \(3 + i\): \[ \frac{(-3 + 4i)(3 + i)}{(3 - i)(3 + i)} \] Calculating the denominator: \[ (3 - i)(3 + i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10 \] Calculating the numerator: \[ (-3 + 4i)(3 + i) = -3 \cdot 3 - 3 \cdot i + 4i \cdot 3 + 4i \cdot i = -9 - 3i + 12i + 4i^2 \] Since \(i^2 = -1\): \[ 4i^2 = 4(-1) = -4 \] So, \[ -9 - 3i + 12i - 4 = -9 + 9i - 4 = -13 + 9i \] Now, we can write the expression: \[ \frac{-13 + 9i}{10} \] ### Step 4: Separate real and imaginary parts This can be expressed as: \[ -\frac{13}{10} + \frac{9}{10}i \] ### Step 5: Find the conjugate The conjugate of a complex number \(x + yi\) is \(x - yi\). Therefore, the conjugate of \(-\frac{13}{10} + \frac{9}{10}i\) is: \[ -\frac{13}{10} - \frac{9}{10}i \] ### Final Answer Thus, the conjugate of \(\frac{(1 + 2i)^2}{3 - i}\) is: \[ -\frac{13}{10} - \frac{9}{10}i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Find the conjugate of ((1-2i)^(2))/(2 + i)

The conjugate of (1)/(1-2i) is

The conjugate of (1)/(5-7i) is

The conjugate of (1)/(4+5i) is

What is the conjugate of (2-i)/((1-2i)^(2)) ?

The conjugate of 1/(3-4i) is

Write the conjugate of (3+4i)^(2)

Write the conjugate of (6+5i)^(2)

the conjugate of (1)/(5+7i) is

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .