Home
Class 12
MATHS
If z(1) = 1 +iand z(2) = -3+2i then lm...

If ` z_(1) = 1 +iand z_(2) = -3+2i` then ` lm ((z_(1)z_(2))/barz_(1))` is

A

2

B

`-3`

C

3

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the imaginary part of the expression \(\frac{z_1 z_2}{\bar{z_1}}\) where \(z_1 = 1 + i\) and \(z_2 = -3 + 2i\). ### Step-by-Step Solution: 1. **Identify the complex numbers**: \[ z_1 = 1 + i, \quad z_2 = -3 + 2i \] 2. **Calculate the conjugate of \(z_1\)**: \[ \bar{z_1} = 1 - i \] 3. **Multiply \(z_1\) and \(z_2\)**: \[ z_1 z_2 = (1 + i)(-3 + 2i) \] Using the distributive property: \[ = 1 \cdot (-3) + 1 \cdot (2i) + i \cdot (-3) + i \cdot (2i \] \[ = -3 + 2i - 3i + 2i^2 \] Since \(i^2 = -1\): \[ = -3 + 2i - 3i - 2 = -5 - i \] 4. **Now substitute back into the expression**: \[ \frac{z_1 z_2}{\bar{z_1}} = \frac{-5 - i}{1 - i} \] 5. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ = \frac{(-5 - i)(1 + i)}{(1 - i)(1 + i)} \] Calculate the denominator: \[ (1 - i)(1 + i) = 1^2 - i^2 = 1 - (-1) = 2 \] Calculate the numerator: \[ (-5 - i)(1 + i) = -5 \cdot 1 + (-5) \cdot i - i \cdot 1 - i \cdot i \] \[ = -5 - 5i - i + 1 = -4 - 6i \] 6. **Combine the results**: \[ = \frac{-4 - 6i}{2} = -2 - 3i \] 7. **Identify the imaginary part**: The imaginary part of \(-2 - 3i\) is \(-3\). ### Final Answer: The imaginary part of \(\frac{z_1 z_2}{\bar{z_1}}\) is \(-3\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)

If z_(1) = 2+ 3i and z_(2) = 5-3i " then " z_(1)z_(2) is

if z_(1) =-1 + 3i and z_(2)= 2 + i then find 2(z_(1) +z_(2))

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)