Home
Class 12
MATHS
if z(1)=3+i and z(2) = 2-i, " then" |(z...

if ` z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)|`is

A

`sqrt8/5`

B

`sqrt(8/5)`

C

`8/5`

D

`8/sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \(|(z_1 + z_2 - 1)/(z_1 - z_2 + i)|\) where \(z_1 = 3 + i\) and \(z_2 = 2 - i\). ### Step-by-Step Solution: 1. **Calculate \(z_1 + z_2 - 1\)**: \[ z_1 + z_2 - 1 = (3 + i) + (2 - i) - 1 \] Combine the real and imaginary parts: \[ = (3 + 2 - 1) + (i - i) = 4 + 0i = 4 \] 2. **Calculate \(z_1 - z_2 + i\)**: \[ z_1 - z_2 + i = (3 + i) - (2 - i) + i \] Simplify: \[ = (3 - 2) + (i + i + i) = 1 + 3i \] 3. **Find the modulus of the numerator**: The modulus of a real number \(4\) is: \[ |4| = 4 \] 4. **Find the modulus of the denominator \(1 + 3i\)**: The modulus of a complex number \(a + bi\) is given by \(\sqrt{a^2 + b^2}\): \[ |1 + 3i| = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10} \] 5. **Calculate the modulus of the entire expression**: Using the property of moduli: \[ \left| \frac{z_1 + z_2 - 1}{z_1 - z_2 + i} \right| = \frac{|z_1 + z_2 - 1|}{|z_1 - z_2 + i|} = \frac{4}{\sqrt{10}} \] 6. **Simplify the expression**: To express it in a more simplified form: \[ \frac{4}{\sqrt{10}} = \frac{4 \sqrt{10}}{10} = \frac{2 \sqrt{10}}{5} \] ### Final Answer: The value of \(|(z_1 + z_2 - 1)/(z_1 - z_2 + i)|\) is \(\frac{2 \sqrt{10}}{5}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z_(1) = 2+ 3i and z_(2) = 5-3i " then " z_(1)z_(2) is

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1) =-1 + 3i and z_(2)= 2 + i then find 2(z_(1) +z_(2))

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)