Home
Class 12
MATHS
If z= 1/((1+i)(1-2i)) , then |z| is...

If ` z= 1/((1+i)(1-2i))` , then |z| is

A

`2/10`

B

` sqrt7/10`

C

`9/sqrt10`

D

`1/sqrt10`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( |z| \) where \( z = \frac{1}{(1+i)(1-2i)} \), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify the expression in the denominator \( (1+i)(1-2i) \). \[ (1+i)(1-2i) = 1 \cdot 1 + 1 \cdot (-2i) + i \cdot 1 + i \cdot (-2i) \] \[ = 1 - 2i + i - 2i^2 \] Since \( i^2 = -1 \), we have: \[ = 1 - 2i + i + 2 = 3 - i \] ### Step 2: Write \( z \) in simplified form Now we can rewrite \( z \): \[ z = \frac{1}{3-i} \] ### Step 3: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator \( 3+i \): \[ z = \frac{1 \cdot (3+i)}{(3-i)(3+i)} = \frac{3+i}{3^2 - (-i^2)} = \frac{3+i}{9 + 1} = \frac{3+i}{10} \] ### Step 4: Find the modulus of \( z \) The modulus of a complex number \( z = a + bi \) is given by \( |z| = \sqrt{a^2 + b^2} \). Here, \( a = \frac{3}{10} \) and \( b = \frac{1}{10} \): \[ |z| = \sqrt{\left(\frac{3}{10}\right)^2 + \left(\frac{1}{10}\right)^2} = \sqrt{\frac{9}{100} + \frac{1}{100}} = \sqrt{\frac{10}{100}} = \sqrt{\frac{1}{10}} = \frac{1}{\sqrt{10}} \] ### Final Answer Thus, \( |z| = \frac{1}{\sqrt{10}} \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z=((1+i)/(1-i)), then z^4 equals to

if (1+i)z=(1-i)barz then z is

If z=(1+7i)/((2-i)^2) , then find |z|?

If z=(1+2i)/(1-(1-i)^2), then arg(z) equals a. 0 b. pi/2 c. pi d. non of these

If z = (1-i)/(1+i) then z^(4) equals

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If z=(1+i tan alpha)^(1+i) , then find the magnitude of Z.

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)