Home
Class 12
MATHS
The value of |1/(2+i) - 1/(2 -i)| is...

The value of ` |1/(2+i) - 1/(2 -i)|` is

A

`-2/5`

B

` 4/25`

C

` 2/5`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( | \frac{1}{2+i} - \frac{1}{2-i} | \), we will follow these steps: ### Step 1: Find a common denominator We need to combine the two fractions. The common denominator will be the product of the two denominators: \[ (2+i)(2-i) \] ### Step 2: Write the expression with the common denominator The expression can be rewritten as: \[ \frac{1}{2+i} - \frac{1}{2-i} = \frac{(2-i) - (2+i)}{(2+i)(2-i)} \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ (2-i) - (2+i) = 2 - i - 2 - i = -2i \] ### Step 4: Simplify the denominator Next, simplify the denominator: \[ (2+i)(2-i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{-2i}{5} \] ### Step 6: Find the modulus Now, we need to find the modulus of this complex number: \[ \left| \frac{-2i}{5} \right| = \frac{|-2i|}{|5|} = \frac{2}{5} \] ### Final Answer Thus, the value of \( | \frac{1}{2+i} - \frac{1}{2-i} | \) is: \[ \frac{2}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

5.The value of (i^(4x+1)-i^(4x-1))/(2) is equal to (a) 1 (b) -1 (c) -i (d) 0

The value of 1+i+i^(2)+... + i^(n) is (i) positive (ii) negative (iii) 0 (iv) cannot be determined

The value of 1+(1+i)+(1+i^2) +(1+i^3) =

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

The value of (1+i)^4+(1-i)^4 is

Find the value of |(1+i)((2+i))/((3+i))|

The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is a. 2 b. 0 c. 1 d. i

(1) The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is