Home
Class 12
MATHS
The argument of the complex number (1 +...

The argument of the complex number `(1 +i)^(4)` is

A

`135^(@)`

B

`180^(@)`

C

`90^(@)`

D

`45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \((1 + i)^4\), we can follow these steps: ### Step 1: Express the complex number in polar form The complex number \(1 + i\) can be expressed in polar form. We first find the modulus \(r\) and the argument \(\theta\). The modulus \(r\) is given by: \[ r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] The argument \(\theta\) is given by: \[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 2: Write the complex number in polar form Using the modulus and argument, we can write: \[ 1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \] ### Step 3: Raise the complex number to the power of 4 Using De Moivre's theorem, we can raise the complex number to the power of 4: \[ (1 + i)^4 = \left(\sqrt{2}\right)^4 \left(\cos\left(4 \cdot \frac{\pi}{4}\right) + i\sin\left(4 \cdot \frac{\pi}{4}\right)\right) \] Calculating \(\left(\sqrt{2}\right)^4\): \[ \left(\sqrt{2}\right)^4 = 2^2 = 4 \] Calculating the angles: \[ 4 \cdot \frac{\pi}{4} = \pi \] Thus, we have: \[ (1 + i)^4 = 4\left(\cos \pi + i\sin \pi\right) \] ### Step 4: Simplify the expression Using the values of cosine and sine: \[ \cos \pi = -1 \quad \text{and} \quad \sin \pi = 0 \] So we get: \[ (1 + i)^4 = 4(-1 + 0i) = -4 \] ### Step 5: Find the argument of the resulting complex number The complex number \(-4\) can be expressed as: \[ -4 + 0i \] The argument of a complex number in the form \(x + yi\) is given by: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] In our case: \[ \theta = \tan^{-1}\left(\frac{0}{-4}\right) \] Since the imaginary part is \(0\) and the real part is negative, the argument is: \[ \theta = \pi \quad \text{(or 180 degrees)} \] ### Final Answer Thus, the argument of the complex number \((1 + i)^4\) is: \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4

If x=9^(1/3) 9^(1/9) 9^(1/27) ...-> ∞ , y= 4^(1/3) 4^(-1/9) 4^(1/27) ....-> ∞ and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

If x=9^(1/3) 9^(1/9) 9^(1/27) ......ad inf y= 4^(1/3) 4^(-1/9) 4^(1/27) ...... ad inf and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

Find the modulus and argument of the complex number (2 + i)/(4i + (1+ i)^(2))

The argument of the complex number ((3+i)/(2-i)+(3-i)/(2+i)) is equal to

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Find the modulus and the arguments of the complex number z = - 1 - isqrt(3)

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus and argument of the complex number (2+i)/(4i+(1+i)^(2))

Find the modulus and the arguments of the complex number z=-sqrt(3)+i