Home
Class 12
MATHS
If z = (-4 +2 sqrt3i)/(5 +sqrt3i), then...

If ` z = (-4 +2 sqrt3i)/(5 +sqrt3i)`, then the value of `arg(z)` is

A

`pi`

B

`pi/3`

C

`(2pi)/3`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \arg(z) \) for the complex number \( z = \frac{-4 + 2\sqrt{3}i}{5 + \sqrt{3}i} \), we will follow these steps: ### Step 1: Multiply by the Conjugate of the Denominator To simplify the expression, we multiply the numerator and the denominator by the conjugate of the denominator. \[ z = \frac{-4 + 2\sqrt{3}i}{5 + \sqrt{3}i} \cdot \frac{5 - \sqrt{3}i}{5 - \sqrt{3}i} \] ### Step 2: Simplify the Denominator The denominator becomes: \[ (5 + \sqrt{3}i)(5 - \sqrt{3}i) = 5^2 - (\sqrt{3})^2 = 25 - 3 = 22 \] ### Step 3: Simplify the Numerator Now, we simplify the numerator: \[ (-4 + 2\sqrt{3}i)(5 - \sqrt{3}i) = -20 + 4\sqrt{3}i + 10\sqrt{3}i - 2\sqrt{3}(-1) \] This simplifies to: \[ -20 + 14\sqrt{3}i + 2 = -18 + 14\sqrt{3}i \] ### Step 4: Combine the Results Now, we can write \( z \) as: \[ z = \frac{-18 + 14\sqrt{3}i}{22} = \frac{-9 + 7\sqrt{3}i}{11} \] ### Step 5: Identify Real and Imaginary Parts From the expression \( z = \frac{-9}{11} + \frac{7\sqrt{3}}{11}i \), we identify: - Real part \( a = \frac{-9}{11} \) - Imaginary part \( b = \frac{7\sqrt{3}}{11} \) ### Step 6: Calculate the Argument The argument \( \arg(z) \) can be calculated using the formula: \[ \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{\frac{7\sqrt{3}}{11}}{\frac{-9}{11}}\right) = \tan^{-1}\left(\frac{7\sqrt{3}}{-9}\right) \] ### Step 7: Determine the Quadrant Since the real part is negative and the imaginary part is positive, \( z \) lies in the second quadrant. The reference angle can be found using: \[ \tan^{-1}\left(-\frac{7\sqrt{3}}{9}\right) \] ### Step 8: Final Argument Calculation In the second quadrant, the argument is given by: \[ \arg(z) = \pi + \tan^{-1}\left(-\frac{7\sqrt{3}}{9}\right) = \pi - \tan^{-1}\left(\frac{7\sqrt{3}}{9}\right) \] Using the known values, we can find that: \[ \arg(z) = \frac{2\pi}{3} \] ### Conclusion Thus, the value of \( \arg(z) \) is: \[ \arg(z) = \frac{2\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z=(1+i)/sqrt2 , then the value of z^1929 is

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

For z= sqrt3-i , find the principal, value arg(z)

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If sqrt(5-12 i)+sqrt(-5-12 i)=z , then principal value of a rgz can be