Home
Class 12
MATHS
if z = cos ""pi/4 + i sin""pi/6 then...

if ` z = cos ""pi/4 + i sin""pi/6` then

A

`|z|=1 , arg(z)= pi/4`

B

`|z|=1, arg(z)= pi/6`

C

`|z|=sqrt3/2, arg(z)= (5pi)/24`

D

`|z| = sqrt3/2 , arg(z)= tan^(-1)1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given \( z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{6} \), we will follow these steps: ### Step 1: Calculate \( \cos \frac{\pi}{4} \) and \( \sin \frac{\pi}{6} \) Using the known values of trigonometric functions: - \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) - \( \sin \frac{\pi}{6} = \frac{1}{2} \) So, we can write: \[ z = \frac{1}{\sqrt{2}} + i \cdot \frac{1}{2} \] ### Step 2: Find the modulus of \( z \) The modulus of a complex number \( z = a + ib \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] Here, \( a = \frac{1}{\sqrt{2}} \) and \( b = \frac{1}{2} \). Calculating \( a^2 \) and \( b^2 \): \[ a^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] \[ b^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Now, substituting these values into the modulus formula: \[ |z| = \sqrt{\frac{1}{2} + \frac{1}{4}} = \sqrt{\frac{2}{4} + \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] ### Step 3: Find the argument of \( z \) The argument of a complex number \( z = a + ib \) can be found using: \[ \text{arg}(z) = \tan^{-1}\left(\frac{b}{a}\right) \] Substituting the values of \( a \) and \( b \): \[ \text{arg}(z) = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}\right) = \tan^{-1}\left(\frac{1}{2} \cdot \sqrt{2}\right) = \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) \] ### Final Result Thus, we have: - The modulus of \( z \) is \( |z| = \frac{\sqrt{3}}{2} \) - The argument of \( z \) is \( \text{arg}(z) = \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

If z_n=[cos (pi/2)^(n/2)+i sin (pi/2)^(n/2)] then z_1.z_2.z_3…….oo

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

answer the questions an instructed. Modulus of ("cos"(5pi)/(3)-i "sin"(pi)/(6)) is

If y="sec"(tan^(-1)x),t h e n (dy)/(dx) at x=1 is (a) cos(pi/4) (b) sin(pi/2) (c) sin(pi/6) (d) cos(pi/3)

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by