Home
Class 12
MATHS
The sum of principal arguments of comple...

The sum of principal arguments of complex numbers `1+i,-1+isqrt3,-sqrt3-i,sqrt3-i,i,-3i,2,-1`is

A

`(11pi)/12`

B

`(13pi)/12`

C

`(12pi)/13`

D

`pi/15`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the principal arguments of the complex numbers \(1+i\), \(-1+\sqrt{3}i\), \(-\sqrt{3}-i\), \(\sqrt{3}-i\), \(i\), \(-3i\), \(2\), and \(-1\), we will calculate the principal argument for each complex number step by step. ### Step 1: Calculate the principal argument of \(1+i\) The complex number \(1+i\) can be expressed in polar form. - \(x = 1\), \(y = 1\) - The modulus \(r = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\) - The principal argument \(\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}(1) = \frac{\pi}{4}\) **Hint:** Use the formula \(\theta = \tan^{-1}\left(\frac{y}{x}\right)\) to find the argument. ### Step 2: Calculate the principal argument of \(-1+\sqrt{3}i\) For the complex number \(-1+\sqrt{3}i\): - \(x = -1\), \(y = \sqrt{3}\) - The modulus \(r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = 2\) - The principal argument \(\theta = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right)\). This is in the second quadrant, so \(\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}\) **Hint:** Remember to adjust the angle based on the quadrant. ### Step 3: Calculate the principal argument of \(-\sqrt{3}-i\) For the complex number \(-\sqrt{3}-i\): - \(x = -\sqrt{3}\), \(y = -1\) - The modulus \(r = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2\) - The principal argument \(\theta = \tan^{-1}\left(\frac{-1}{-\sqrt{3}}\right)\). This is in the third quadrant, so \(\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}\) **Hint:** For angles in the third quadrant, add \(\pi\) to the reference angle. ### Step 4: Calculate the principal argument of \(\sqrt{3}-i\) For the complex number \(\sqrt{3}-i\): - \(x = \sqrt{3}\), \(y = -1\) - The modulus \(r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2\) - The principal argument \(\theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right)\). This is in the fourth quadrant, so \(\theta = -\frac{\pi}{6}\) **Hint:** For angles in the fourth quadrant, use the negative of the reference angle. ### Step 5: Calculate the principal argument of \(i\) For the complex number \(i\): - \(x = 0\), \(y = 1\) - The modulus \(r = \sqrt{0^2 + 1^2} = 1\) - The principal argument \(\theta = \frac{\pi}{2}\) **Hint:** The argument of \(i\) is a standard angle. ### Step 6: Calculate the principal argument of \(-3i\) For the complex number \(-3i\): - \(x = 0\), \(y = -3\) - The modulus \(r = \sqrt{0^2 + (-3)^2} = 3\) - The principal argument \(\theta = -\frac{\pi}{2}\) **Hint:** The argument of \(-3i\) is also a standard angle. ### Step 7: Calculate the principal argument of \(2\) For the complex number \(2\): - \(x = 2\), \(y = 0\) - The modulus \(r = \sqrt{2^2 + 0^2} = 2\) - The principal argument \(\theta = 0\) **Hint:** The argument of a positive real number is \(0\). ### Step 8: Calculate the principal argument of \(-1\) For the complex number \(-1\): - \(x = -1\), \(y = 0\) - The modulus \(r = \sqrt{(-1)^2 + 0^2} = 1\) - The principal argument \(\theta = \pi\) **Hint:** The argument of a negative real number is \(\pi\). ### Step 9: Sum the principal arguments Now we sum all the principal arguments calculated: \[ \text{Sum} = \frac{\pi}{4} + \frac{2\pi}{3} + \frac{7\pi}{6} - \frac{\pi}{6} + \frac{\pi}{2} - \frac{\pi}{2} + 0 + \pi \] To simplify, convert all terms to a common denominator (which is 12): \[ \text{Sum} = \frac{3\pi}{12} + \frac{8\pi}{12} + \frac{14\pi}{12} - \frac{2\pi}{12} + \frac{6\pi}{12} - \frac{6\pi}{12} + 0 + \frac{12\pi}{12} \] Combining these gives: \[ \text{Sum} = \frac{3 + 8 + 14 - 2 + 6 - 6 + 0 + 12}{12}\pi = \frac{35}{12}\pi \] ### Final Answer The sum of the principal arguments is \(\frac{35\pi}{12}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

Principal argument of complex number z=(sqrt3+i)/(sqrt3-i) equal

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and 2sqrt(3)-i

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus, argument, and the principal argument of the complex numbers. (i-1)/(i(1-cos((2pi)/5))+sin((2pi)/5)

The principal argument (1+isqrt(3))^(2) is

Find the modulus and argument of the following complex number (1+2i)/(1-3i)

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. If f(x) =x^4-8x^3+4x^2+4x+39 and f (3 + 2i) = a + ib then a : b is eq...

    Text Solution

    |

  2. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |

  3. The sum of principal arguments of complex numbers 1+i,-1+isqrt3,-sqrt3...

    Text Solution

    |

  4. If z=cospi/4+isinpi/6 , then |z|=1, arg(z)=\ pi/4 b. |z|=1, arg(z)=\ p...

    Text Solution

    |

  5. Represent the complex numbers (1+7i)/((2-i)^(2)) in polar form

    Text Solution

    |

  6. In any DeltaABC,if cos theta =(a)/(b+c) , cos phi =(b)/(a+c) , cos P...

    Text Solution

    |

  7. The value of (i+sqrt3)^(100)+(i-sqrt3)^(100)+2^(100) is

    Text Solution

    |

  8. Which of the following is not true ?

    Text Solution

    |

  9. The complex numbers z1, z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sq...

    Text Solution

    |

  10. Let a=i^i and consider the following statements S1: a=e^(-pi/2), S2:T...

    Text Solution

    |

  11. If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z...

    Text Solution

    |

  12. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  13. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  14. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  15. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  16. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  17. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  18. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  19. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  20. The value of (1-tan^(2)15^(@))/(1+tan^(2)15^(@)) is

    Text Solution

    |