Home
Class 12
MATHS
The value of (i+sqrt3)^(100)+(i-sqrt3)^(...

The value of `(i+sqrt3)^(100)+(i-sqrt3)^(100)+2^(100)` is

A

1

B

`-1`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (i + \sqrt{3})^{100} + (i - \sqrt{3})^{100} + 2^{100} \), we can follow these steps: ### Step 1: Express in terms of roots of unity We can express \( i + \sqrt{3} \) and \( i - \sqrt{3} \) in a polar form. Notice that: \[ i + \sqrt{3} = \sqrt{3} + i = 2 \left( \frac{\sqrt{3}}{2} + \frac{1}{2} i \right) \] This can be represented as \( 2 \text{cis} \left( \frac{\pi}{6} \right) \) since \( \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6} \) and \( \frac{1}{2} = \sin \frac{\pi}{6} \). Similarly, for \( i - \sqrt{3} \): \[ i - \sqrt{3} = -\sqrt{3} + i = 2 \left( -\frac{\sqrt{3}}{2} + \frac{1}{2} i \right) \] This can be represented as \( 2 \text{cis} \left( \frac{5\pi}{6} \right) \). ### Step 2: Raise to the power of 100 Now we can raise both expressions to the power of 100: \[ (i + \sqrt{3})^{100} = \left( 2 \text{cis} \left( \frac{\pi}{6} \right) \right)^{100} = 2^{100} \text{cis} \left( \frac{100\pi}{6} \right) = 2^{100} \text{cis} \left( \frac{50\pi}{3} \right) \] \[ (i - \sqrt{3})^{100} = \left( 2 \text{cis} \left( \frac{5\pi}{6} \right) \right)^{100} = 2^{100} \text{cis} \left( \frac{500\pi}{6} \right) = 2^{100} \text{cis} \left( \frac{250\pi}{3} \right) \] ### Step 3: Simplify the angles Now we simplify the angles: \[ \frac{50\pi}{3} = 16\pi + \frac{2\pi}{3} \quad \text{(since } 16\pi \text{ is a multiple of } 2\pi\text{)} \] Thus, \( \text{cis} \left( \frac{50\pi}{3} \right) = \text{cis} \left( \frac{2\pi}{3} \right) \). Similarly, \[ \frac{250\pi}{3} = 83\pi + \frac{1\pi}{3} \quad \text{(since } 83\pi \text{ is a multiple of } 2\pi\text{)} \] Thus, \( \text{cis} \left( \frac{250\pi}{3} \right) = \text{cis} \left( \frac{\pi}{3} \right) \). ### Step 4: Combine the results Now we can combine the results: \[ (i + \sqrt{3})^{100} + (i - \sqrt{3})^{100} = 2^{100} \left( \text{cis} \left( \frac{2\pi}{3} \right) + \text{cis} \left( \frac{\pi}{3} \right) \right) \] Using the property of cis: \[ \text{cis} \left( \frac{2\pi}{3} \right) + \text{cis} \left( \frac{\pi}{3} \right) = 2 \cos \left( \frac{2\pi}{3} \right) = 2 \left( -\frac{1}{2} \right) = -1 \] ### Step 5: Final expression Thus, we have: \[ (i + \sqrt{3})^{100} + (i - \sqrt{3})^{100} = 2^{100} (-1) = -2^{100} \] Now we add \( 2^{100} \): \[ -2^{100} + 2^{100} = 0 \] ### Final Answer The value of \( (i + \sqrt{3})^{100} + (i - \sqrt{3})^{100} + 2^{100} \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If G and L are the greatest and least values of the expression (2x^(2)-3x+2)/(2x^(2)+3x+2), x epsilonR respectively. The least value of G^(100)+L^(100) is (a) 2^(100) (b) 3^(100) (c) 7^(100) (d) none of these

Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] is an even integer .

The least positive integeral value of n for which (sqrt(3)+i)^(n)=(sqrt(3)-i)^(n) , is

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx"i s" (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)

The value of int_5^(10)(sqrt(x+sqrt(20 x-100))+sqrt(x-sqrt(20 x-100)))dx is (1) 10sqrt(5) (2) 5sqrt(5) (3) 10sqrt(2) (4) 8sqrt(2)

The value of (3sqrt(3)+(3^(5//6))i)^(3) is (where i=sqrt(-1) )

Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] .

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

Find the value of a and b if (i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. Represent the complex numbers (1+7i)/((2-i)^(2)) in polar form

    Text Solution

    |

  2. In any DeltaABC,if cos theta =(a)/(b+c) , cos phi =(b)/(a+c) , cos P...

    Text Solution

    |

  3. The value of (i+sqrt3)^(100)+(i-sqrt3)^(100)+2^(100) is

    Text Solution

    |

  4. Which of the following is not true ?

    Text Solution

    |

  5. The complex numbers z1, z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sq...

    Text Solution

    |

  6. Let a=i^i and consider the following statements S1: a=e^(-pi/2), S2:T...

    Text Solution

    |

  7. If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z...

    Text Solution

    |

  8. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  9. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  10. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  11. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  12. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  13. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  14. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  15. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  16. The value of (1-tan^(2)15^(@))/(1+tan^(2)15^(@)) is

    Text Solution

    |

  17. Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are ...

    Text Solution

    |

  18. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |

  19. If arg z = pi/4 ,then

    Text Solution

    |

  20. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |