Home
Class 12
MATHS
If z^(2)+z+1=0 then the value of (z+1...

If `z^(2)+z+1=0` then the value of
`(z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z^(3)+1/z^(3))^(2)+....+(z^(21)+1/z^(21))^(2)` is equal to

A

21

B

42

C

0

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^2 + z + 1 = 0 \) and find the value of \[ (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + (z^3 + \frac{1}{z^3})^2 + \ldots + (z^{21} + \frac{1}{z^{21}})^2, \] we will proceed step by step. ### Step 1: Find the roots of the quadratic equation The roots of the equation \( z^2 + z + 1 = 0 \) can be found using the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = 1 \). Plugging in these values: \[ z = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, the roots are: \[ z = \omega = \frac{-1 + i\sqrt{3}}{2}, \quad z^2 = \omega^2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 2: Use properties of roots of unity The roots \( \omega \) and \( \omega^2 \) are the non-real cube roots of unity. They satisfy: \[ \omega^3 = 1 \quad \text{and} \quad 1 + \omega + \omega^2 = 0 \] ### Step 3: Calculate \( z + \frac{1}{z} \) We can express \( \frac{1}{z} \) as follows: \[ \frac{1}{z} = \frac{1}{\omega} = \omega^2 \] Thus, \[ z + \frac{1}{z} = \omega + \omega^2 = -1 \] ### Step 4: Calculate \( (z + \frac{1}{z})^2 \) Now we compute: \[ (z + \frac{1}{z})^2 = (-1)^2 = 1 \] ### Step 5: Calculate \( z^2 + \frac{1}{z^2} \) Using the identity: \[ z^2 + \frac{1}{z^2} = (z + \frac{1}{z})^2 - 2 \] we have: \[ z^2 + \frac{1}{z^2} = 1 - 2 = -1 \] ### Step 6: Calculate \( (z^2 + \frac{1}{z^2})^2 \) Now we compute: \[ (z^2 + \frac{1}{z^2})^2 = (-1)^2 = 1 \] ### Step 7: Calculate \( z^3 + \frac{1}{z^3} \) Using the identity: \[ z^3 + \frac{1}{z^3} = (z + \frac{1}{z})(z^2 + \frac{1}{z^2}) - (z + \frac{1}{z}) \] we find: \[ z^3 + \frac{1}{z^3} = (-1)(-1) - (-1) = 1 + 1 = 2 \] ### Step 8: Calculate \( (z^3 + \frac{1}{z^3})^2 \) Now we compute: \[ (z^3 + \frac{1}{z^3})^2 = 2^2 = 4 \] ### Step 9: Identify the pattern The terms \( z^n + \frac{1}{z^n} \) will repeat every three terms due to the properties of cube roots of unity. Thus, we have: \[ (z + \frac{1}{z})^2 = 1, \quad (z^2 + \frac{1}{z^2})^2 = 1, \quad (z^3 + \frac{1}{z^3})^2 = 4 \] ### Step 10: Calculate the total sum Since there are 21 terms, we can group them into sets of 3: \[ \text{Number of complete sets} = \frac{21}{3} = 7 \] The total sum is: \[ 7 \times (1 + 1 + 4) = 7 \times 6 = 42 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{42} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

If z_(1), z_(2), z_(3) are 3 distinct complex such that (3)/(|z_(1)-z_(2)|)=(5)/(|z_(2)-z_(3)|)=(7)/(|z_(3)-z_(1)|) , then the value of (9barz_(3))/(z_(1)-z_(2))+(25barz_(1))/(z_(2)-z_(3))+(49barz_(2))/(z_(3)-z_(1)) is equal to

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If (2z_(1))/(3z_(2)) is purely imaginary number, then |(z_(1)-z_(2))/(z_(1)+z_(2))|^(4) is equal to

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. The complex numbers z1, z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sq...

    Text Solution

    |

  2. Let a=i^i and consider the following statements S1: a=e^(-pi/2), S2:T...

    Text Solution

    |

  3. If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z...

    Text Solution

    |

  4. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  5. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  6. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  7. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  8. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  9. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  10. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  11. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  12. The value of (1-tan^(2)15^(@))/(1+tan^(2)15^(@)) is

    Text Solution

    |

  13. Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are ...

    Text Solution

    |

  14. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |

  15. If arg z = pi/4 ,then

    Text Solution

    |

  16. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  17. The least value of p for which the two curves argz=pi/6 and |z-2sqrt(...

    Text Solution

    |

  18. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  19. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  20. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |