Home
Class 12
MATHS
If z(1),z(2),z(3),z(4) are two pairs of...

If ` z_(1),z_(2),z_(3),z_(4)` are two pairs of conjugate complex numbers, then `arg(z_(1)/z_(3)) + arg(z_(2)/z_(4))` is

A

0

B

`pi/2`

C

`(3pi)/4`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) \) where \( z_1, z_2 \) are conjugate complex numbers and \( z_3, z_4 \) are also conjugate complex numbers. ### Step 1: Define the complex numbers Let: - \( z_1 = a + ib \) - \( z_2 = a - ib \) (conjugate of \( z_1 \)) - \( z_3 = x + iy \) - \( z_4 = x - iy \) (conjugate of \( z_3 \)) ### Step 2: Compute \( \frac{z_1}{z_3} \) To find \( \frac{z_1}{z_3} \): \[ \frac{z_1}{z_3} = \frac{a + ib}{x + iy} \] We rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator: \[ \frac{z_1}{z_3} = \frac{(a + ib)(x - iy)}{(x + iy)(x - iy)} = \frac{(ax + by) + i(bx - ay)}{x^2 + y^2} \] ### Step 3: Find \( \arg\left(\frac{z_1}{z_3}\right) \) The argument of a complex number \( \frac{u + iv}{r} \) is given by \( \tan^{-1}\left(\frac{v}{u}\right) \): \[ \arg\left(\frac{z_1}{z_3}\right) = \tan^{-1}\left(\frac{bx - ay}{ax + by}\right) \] ### Step 4: Compute \( \frac{z_2}{z_4} \) Now, compute \( \frac{z_2}{z_4} \): \[ \frac{z_2}{z_4} = \frac{a - ib}{x - iy} \] Again, we rationalize the denominator: \[ \frac{z_2}{z_4} = \frac{(a - ib)(x + iy)}{(x - iy)(x + iy)} = \frac{(ax + by) - i(bx - ay)}{x^2 + y^2} \] ### Step 5: Find \( \arg\left(\frac{z_2}{z_4}\right) \) The argument is: \[ \arg\left(\frac{z_2}{z_4}\right) = \tan^{-1}\left(\frac{ay - bx}{ax + by}\right) \] ### Step 6: Combine the arguments Now, we need to add the two arguments: \[ \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) = \tan^{-1}\left(\frac{bx - ay}{ax + by}\right) + \tan^{-1}\left(\frac{ay - bx}{ax + by}\right) \] ### Step 7: Use the tangent addition formula Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Let \( A = \arg\left(\frac{z_1}{z_3}\right) \) and \( B = \arg\left(\frac{z_2}{z_4}\right) \): \[ \tan(A + B) = \frac{\frac{bx - ay}{ax + by} + \frac{ay - bx}{ax + by}}{1 - \left(\frac{bx - ay}{ax + by}\right)\left(\frac{ay - bx}{ax + by}\right)} \] The numerator simplifies to: \[ \frac{(bx - ay) + (ay - bx)}{ax + by} = 0 \] Thus, \( \tan(A + B) = 0 \), which implies: \[ A + B = 0 \quad \Rightarrow \quad \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) = 0 \] ### Final Result Therefore, the value of \( \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2 and z_3,z_4 are two pairs of conjugate complex numbers then arg(z_1/z_4)+arg(z_2/z_3)=

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, find the a rg((z1)/(z4))+a rg((z2)/(z3)) =0

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

Statement-1, If z_(1),z_(2),z_(3),……………….,z_(n) are uni-modular complex numbers, then |z_(1)+z+(2)+…………+z_(n)|=|1/z_(1)+1/z_(2)+…………..+1/z_(n)| Statement-2: For any complex number z, zbarz=|z|^(2)

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  2. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  3. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  4. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  5. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  6. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  7. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  8. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  9. The value of (1-tan^(2)15^(@))/(1+tan^(2)15^(@)) is

    Text Solution

    |

  10. Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are ...

    Text Solution

    |

  11. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |

  12. If arg z = pi/4 ,then

    Text Solution

    |

  13. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  14. The least value of p for which the two curves argz=pi/6 and |z-2sqrt(...

    Text Solution

    |

  15. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  16. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  17. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  18. If z=(sqrt(3)-i)/2, where i=sqrt(-1), then (i^(101)+z^(101))^(103) equ...

    Text Solution

    |

  19. The region of the complex plane for which |(z-a)/(z+veca)|=1,(Re(a) !=...

    Text Solution

    |

  20. If the imaginary part of (2z+1)/(i z+1) is -2 , then show that the loc...

    Text Solution

    |