Home
Class 12
MATHS
If |z-2-3i|+|z+2-6i|=4where i=sqrt(-1),t...

If `|z-2-3i|+|z+2-6i|=4`where `i=sqrt(-1),`then locus of P (z) is

A

An ellipse

B

A point

C

Segment joining the points (2 +3i) and (-2+6i)

D

Empty

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -D) Linked comprehension Type Questions|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If |z-3+ i|=4 , then the locus of z is

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If |z - 3+ 2i| leq 4 , (where i = sqrt-1 ) then the difference of greatest and least values of |z| is

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

AAKASH INSTITUTE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. If one vertex and centre of a square are z and origin then which of th...

    Text Solution

    |

  2. if the complex no z1 , z2 and z3 represents the vertices of an equ...

    Text Solution

    |

  3. If |z-2-3i|+|z+2-6i|=4where i=sqrt(-1),then locus of P (z) is

    Text Solution

    |

  4. If z(1),z(2),z(3) and u,v,w are complex numbers represending the verti...

    Text Solution

    |

  5. If |z-25i| lt= 15. then |"maximum " arg(z) - "minimum " arg(z)| equals

    Text Solution

    |

  6. For two complex numbers z(1) and z(2) , we have |(z(1)-z(2))/(1-barz(1...

    Text Solution

    |

  7. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  8. If the ratio of the roots of the equation lx^2+nx+n=0 is p:q prove tha...

    Text Solution

    |

  9. For the equation |x^(2)| + |x| -6=0, the roots are

    Text Solution

    |

  10. If a+b+c=0 and a,b,c are rational. Prove that the roots of the equatio...

    Text Solution

    |

  11. If secalpha, tanalpha are roots of ax^2 + bx + c = 0, then

    Text Solution

    |

  12. If x is real then the values of (x^(2) + 34 x - 71)/(x^(2) + 2x - 7) d...

    Text Solution

    |

  13. if alpha&betaare the roots of the quadratic equation ax^2 + bx + c = 0...

    Text Solution

    |

  14. let alpha ,beta be roots of ax^2+bx+c=0 and gamma,delta be the roots o...

    Text Solution

    |

  15. The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+...

    Text Solution

    |

  16. If z1=3−2i,z2=2−i and z3=2+5i then find z1+z2−3z3

    Text Solution

    |

  17. If the equation (k^(2)-3k +2) x^(2) + ( k^(2) -5k + 4)x + ( k^(2) -6k ...

    Text Solution

    |

  18. The value of k if

    Text Solution

    |

  19. if the difference of the roots of the equation x^(2)+ ax +b=0 is equa...

    Text Solution

    |

  20. If the equations px^2+2qx+r=0 and px^2+2rx+q=0 have a common root then...

    Text Solution

    |