Home
Class 12
MATHS
The value of F(x)=6cosxsqrt(1+tan^2x) + ...

The value of `F(x)=6cosxsqrt(1+tan^2x) + 2sinxsqrt(1+cot^2x)` where `x in (0,2pi)-{pi,pi/2,(3pi)/2}` may be

A

4

B

`-4`

C

8

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function: \[ F(x) = 6 \cos x \sqrt{1 + \tan^2 x} + 2 \sin x \sqrt{1 + \cot^2 x} \] We can simplify this using trigonometric identities. ### Step 1: Simplify the square root terms Using the identities: - \( 1 + \tan^2 x = \sec^2 x \) - \( 1 + \cot^2 x = \csc^2 x \) We can rewrite the function as: \[ F(x) = 6 \cos x \sqrt{\sec^2 x} + 2 \sin x \sqrt{\csc^2 x} \] ### Step 2: Substitute the square roots Since \( \sqrt{\sec^2 x} = |\sec x| \) and \( \sqrt{\csc^2 x} = |\csc x| \), we can write: \[ F(x) = 6 \cos x |\sec x| + 2 \sin x |\csc x| \] ### Step 3: Rewrite using trigonometric functions Now, since \( |\sec x| = \frac{1}{|\cos x|} \) and \( |\csc x| = \frac{1}{|\sin x|} \), we have: \[ F(x) = 6 \cos x \cdot \frac{1}{|\cos x|} + 2 \sin x \cdot \frac{1}{|\sin x|} \] This simplifies to: \[ F(x) = 6 \cdot \text{sgn}(\cos x) + 2 \cdot \text{sgn}(\sin x) \] where \( \text{sgn}(y) \) is the sign function which returns -1 for negative values, 0 for zero, and +1 for positive values. ### Step 4: Analyze the function over the intervals Now we need to analyze \( F(x) \) over the intervals \( (0, 2\pi) \) excluding \( \{\pi, \frac{\pi}{2}, \frac{3\pi}{2}\} \): 1. **Interval \( (0, \frac{\pi}{2}) \)**: - \( \cos x > 0 \) and \( \sin x > 0 \) - \( F(x) = 6(1) + 2(1) = 8 \) 2. **Interval \( (\frac{\pi}{2}, \pi) \)**: - \( \cos x < 0 \) and \( \sin x > 0 \) - \( F(x) = 6(-1) + 2(1) = -6 + 2 = -4 \) 3. **Interval \( (pi, \frac{3\pi}{2}) \)**: - \( \cos x < 0 \) and \( \sin x < 0 \) - \( F(x) = 6(-1) + 2(-1) = -6 - 2 = -8 \) 4. **Interval \( (\frac{3\pi}{2}, 2\pi) \)**: - \( \cos x > 0 \) and \( \sin x < 0 \) - \( F(x) = 6(1) + 2(-1) = 6 - 2 = 4 \) ### Step 5: Conclusion The possible values of \( F(x) \) over the specified intervals are: - \( 8 \) for \( (0, \frac{\pi}{2}) \) - \( -4 \) for \( (\frac{\pi}{2}, \pi) \) - \( -8 \) for \( (pi, \frac{3\pi}{2}) \) - \( 4 \) for \( (\frac{3\pi}{2}, 2\pi) \) Thus, the final answer is that \( F(x) \) may take values \( 8, -4, -8, 4 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The value of tan(pi+x)tan(pi-x)cot^(2)x is

If f(x)=sqrt("cosec"^2x-2sinx cosx - 1/(tan^2x)) x in ((7pi)/4,2pi) , then f '((11pi)/6)=

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

f(x)=(s i nx)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ (3pi)/2) d. ((3pi)/2,2pi)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

(cos (pi+x).cos(-x))/(sin(pi-x).cos(pi/2+x)) = cot^2x

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If x=secphi -tanphi and y="cosec" phi+cotphi, then show that xy+x-y+1...

    Text Solution

    |

  2. The value of F(x)=6cosxsqrt(1+tan^2x) + 2sinxsqrt(1+cot^2x) where x in...

    Text Solution

    |

  3. If (a+b)^2/(4ab)=sin^2theta, then

    Text Solution

    |

  4. If sec theta= x+1/(4x) then sec theta+ tan theta= (a) x, 1/(x), (b) 2x...

    Text Solution

    |

  5. If tanalpha+cotalpha=2, then

    Text Solution

    |

  6. Which of the following identities are correct?

    Text Solution

    |

  7. The value of the expression sinx+ siny + sinz where x, y, z are real ...

    Text Solution

    |

  8. Let theta in (0, pi/4) and t(1)=tan theta)^(tan theta), t(2)=(tan thet...

    Text Solution

    |

  9. If tan( pi/4 + x). tan(pi/4 - x) = 1 , then x equals

    Text Solution

    |

  10. Find the value of tan22.5^(@)

    Text Solution

    |

  11. If alphaa n dbeta are acute angles satisfying cos2alpha=(3cos2beta-1)/...

    Text Solution

    |

  12. If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (a...

    Text Solution

    |

  13. f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta co...

    Text Solution

    |

  14. The value of cosA cos2A cos2^2A......cos(2^(n-1)A), where A in R may...

    Text Solution

    |

  15. If A+B=pi/3, and cosA+cosB=1, then which of the following is true:

    Text Solution

    |

  16. cos^3x.sin2x=sum(m=1)^n(am)sin mx is an identity in x.

    Text Solution

    |

  17. If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(a...

    Text Solution

    |

  18. The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B...

    Text Solution

    |

  19. Which of the following statement(s) is/are correct?

    Text Solution

    |

  20. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |