Home
Class 12
MATHS
If A+B=pi/3, and cosA+cosB=1, then which...

If `A+B=pi/3`, and `cosA+cosB=1`, then which of the following is true:

A

(a) `cos((A-B)/2)=1/sqrt3`

B

(b) `|cosA-cosB|=sqrt(2/3)`

C

(c) `cos(A-B)=-1/3`

D

(d) `|cosA-cosB|=1/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations and derive the required relationships step by step. ### Given: 1. \( A + B = \frac{\pi}{3} \) 2. \( \cos A + \cos B = 1 \) ### Objective: Determine which of the following options is true: - Option A: \( \cos\left(A - \frac{B}{2}\right) = \frac{1}{\sqrt{3}} \) - Option B: \( |\cos A - \cos B| = \frac{\sqrt{2}}{3} \) - Option C: \( \cos(A - B) = -\frac{1}{3} \) - Option D: \( |\cos A - \cos B| = \frac{1}{2\sqrt{3}} \) ### Step 1: Use the sum-to-product identities We know that: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Substituting \( A + B = \frac{\pi}{3} \): \[ \cos A + \cos B = 2 \cos\left(\frac{\pi}{6}\right) \cos\left(\frac{A - B}{2}\right) \] Since \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \), we have: \[ \cos A + \cos B = 2 \cdot \frac{\sqrt{3}}{2} \cos\left(\frac{A - B}{2}\right) = \sqrt{3} \cos\left(\frac{A - B}{2}\right) \] Setting this equal to 1: \[ \sqrt{3} \cos\left(\frac{A - B}{2}\right) = 1 \] Thus, \[ \cos\left(\frac{A - B}{2}\right) = \frac{1}{\sqrt{3}} \] ### Step 2: Analyze the options From the above, we have established that: - **Option A** is true: \( \cos\left(A - \frac{B}{2}\right) = \frac{1}{\sqrt{3}} \) ### Step 3: Find \( \cos A - \cos B \) We can square the equation \( \cos A + \cos B = 1 \): \[ (\cos A + \cos B)^2 = 1^2 \] Expanding this gives: \[ \cos^2 A + \cos^2 B + 2 \cos A \cos B = 1 \] Using the identity \( \cos^2 A + \cos^2 B = 1 - 2 \cos A \cos B \): \[ 1 - 2 \cos A \cos B + 2 \cos A \cos B = 1 \] This doesn't help directly, so we will use: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Substituting \( A + B = \frac{\pi}{3} \): \[ \cos A - \cos B = -2 \sin\left(\frac{\pi}{6}\right) \sin\left(\frac{A - B}{2}\right) = -2 \cdot \frac{1}{2} \sin\left(\frac{A - B}{2}\right) = -\sin\left(\frac{A - B}{2}\right) \] ### Step 4: Find \( |\cos A - \cos B| \) Using the relationship we derived: \[ |\cos A - \cos B| = |\sin\left(\frac{A - B}{2}\right)| \] From \( \cos\left(\frac{A - B}{2}\right) = \frac{1}{\sqrt{3}} \), we can find \( \sin\left(\frac{A - B}{2}\right) \) using the Pythagorean identity: \[ \sin^2\left(\frac{A - B}{2}\right) + \cos^2\left(\frac{A - B}{2}\right) = 1 \] Thus, \[ \sin^2\left(\frac{A - B}{2}\right) = 1 - \left(\frac{1}{\sqrt{3}}\right)^2 = 1 - \frac{1}{3} = \frac{2}{3} \] So, \[ |\sin\left(\frac{A - B}{2}\right)| = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}} \] This means: \[ |\cos A - \cos B| = \frac{\sqrt{2}}{\sqrt{3}} \] Thus, **Option B** is also true. ### Step 5: Find \( \cos(A - B) \) Using the cosine difference identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] We can find \( \cos A \) and \( \cos B \) from the earlier equations, but we already know: \[ \cos(A - B) = -\frac{1}{3} \] Thus, **Option C** is also true. ### Conclusion: The true options are: - **Option A**: \( \cos\left(A - \frac{B}{2}\right) = \frac{1}{\sqrt{3}} \) - **Option B**: \( |\cos A - \cos B| = \frac{\sqrt{2}}{3} \) - **Option C**: \( \cos(A - B) = -\frac{1}{3} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If sinA = sinBandcosA=cosA=cosB, then which one of the following is correct ?

Let cosA+cosB=x,cos2A+cos2B=y,cos3A+cos3B=z ,then which of the following is true

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If a cosA=b cosB, then triangleABC is

If sinA=sin B and cosA=cosB , then find the value of A in terms of Bdot

If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

In a triangle ABC cosA+cosB+cosC<=k then k=

If cosA=4/5 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where A , B ((3pi)/(2) to 2pi ) .

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta co...

    Text Solution

    |

  2. The value of cosA cos2A cos2^2A......cos(2^(n-1)A), where A in R may...

    Text Solution

    |

  3. If A+B=pi/3, and cosA+cosB=1, then which of the following is true:

    Text Solution

    |

  4. cos^3x.sin2x=sum(m=1)^n(am)sin mx is an identity in x.

    Text Solution

    |

  5. If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(a...

    Text Solution

    |

  6. The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B...

    Text Solution

    |

  7. Which of the following statement(s) is/are correct?

    Text Solution

    |

  8. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |

  9. If the sides of a right angled triangle are {cos 2 alpha + cos 2 bet...

    Text Solution

    |

  10. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  11. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  12. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  13. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  14. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  15. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  16. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  17. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  18. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  19. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  20. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |