Home
Class 12
MATHS
cos^3x.sin2x=sum(m=1)^n(am)sin mx is an ...

`cos^3x.sin2x=sum_(m=1)^n(a_m)sin mx` is an identity in x.

A

`a_(3) = 3/8, a_(2)=0`

B

`n=6, a_(1)=1/2`

C

`n=5, a_(1)=1/4`

D

`suma_(m)=3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^3 x \sin 2x = \sum_{m=1}^n a_m \sin mx \) as an identity in \( x \), we will follow these steps: ### Step 1: Rewrite the left-hand side (LHS) We start with the left-hand side: \[ \cos^3 x \sin 2x \] Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the expression: \[ \cos^3 x \sin 2x = \cos^3 x \cdot 2 \sin x \cos x = 2 \cos^4 x \sin x \] ### Step 2: Express \( \cos^4 x \) Next, we express \( \cos^4 x \) in terms of \( \sin \) and \( \cos \): \[ \cos^4 x = (\cos^2 x)^2 = \left(\frac{1 + \cos 2x}{2}\right)^2 \] Expanding this, we get: \[ \cos^4 x = \frac{(1 + \cos 2x)^2}{4} = \frac{1 + 2\cos 2x + \cos^2 2x}{4} \] Using \( \cos^2 2x = \frac{1 + \cos 4x}{2} \), we can substitute: \[ \cos^4 x = \frac{1 + 2\cos 2x + \frac{1 + \cos 4x}{2}}{4} = \frac{2 + 4\cos 2x + 1 + \cos 4x}{8} = \frac{3 + 4\cos 2x + \cos 4x}{8} \] ### Step 3: Substitute back into LHS Now, we substitute \( \cos^4 x \) back into our expression for LHS: \[ LHS = 2 \cos^4 x \sin x = 2 \cdot \frac{3 + 4\cos 2x + \cos 4x}{8} \sin x = \frac{3 + 4\cos 2x + \cos 4x}{4} \sin x \] ### Step 4: Expand and simplify Distributing \( \sin x \): \[ LHS = \frac{3 \sin x}{4} + \frac{4 \cos 2x \sin x}{4} + \frac{\cos 4x \sin x}{4} \] This simplifies to: \[ LHS = \frac{3 \sin x}{4} + \sin 2x + \frac{\sin 4x}{4} \] ### Step 5: Express LHS in terms of the summation Now we can express the left-hand side as a summation: \[ LHS = \frac{3}{4} \sin x + 0 \sin 2x + 1 \sin 2x + \frac{1}{4} \sin 4x \] This means we can identify coefficients: - \( a_1 = \frac{3}{4} \) - \( a_2 = 0 \) - \( a_3 = 1 \) - \( a_4 = \frac{1}{4} \) - \( n = 4 \) ### Final Result Thus, we conclude that: \[ \cos^3 x \sin 2x = \frac{3}{4} \sin x + 0 \sin 2x + 1 \sin 3x + \frac{1}{4} \sin 4x \] is an identity in \( x \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Suppose sin^3xsin3x=sum_(m=0)^n C_mcosm x is an identity in x , where C_0,C_1 ,C_n are constants and C_n!=0, the the value of n is ________

Suppose sin^(3)x sin3x=sum_(m=0)^(n) C_(m) cos mx is an idedntity in x , where C_(0),….C_(n) are constant and C_(n)ne0 then the value of n is ___________

If 8sin^(3)xsin3x=sum_(r=0)^(n)a^(r)cosrx is an identity in x, then n=

If 8 sin^3x sin3x=sum_(r=0)^n a cosrx is an identity, then n=

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x=1 in the interval [0, 2pi] is equal to

Prove that: \ sin x+sin3x++sin(2n-1)x=(sin^2\ \ n x)/(sin x) for all n in NN

Let x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@)) , find the greatest integer that does not exceed.

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. The value of cosA cos2A cos2^2A......cos(2^(n-1)A), where A in R may...

    Text Solution

    |

  2. If A+B=pi/3, and cosA+cosB=1, then which of the following is true:

    Text Solution

    |

  3. cos^3x.sin2x=sum(m=1)^n(am)sin mx is an identity in x.

    Text Solution

    |

  4. If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(a...

    Text Solution

    |

  5. The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B...

    Text Solution

    |

  6. Which of the following statement(s) is/are correct?

    Text Solution

    |

  7. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |

  8. If the sides of a right angled triangle are {cos 2 alpha + cos 2 bet...

    Text Solution

    |

  9. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  10. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  11. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  12. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  13. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  14. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  15. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  16. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  17. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  18. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  19. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  20. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |