Home
Class 12
MATHS
The angles A, B, C of a triangle ABC sat...

The angles A, B, C of a triangle ABC satisfy `4cosAcosB + sin2A + sin2B + sin2C = 4`, Then which of the following statements is/are correct?

A

The triangle ABC is right angled

B

The triangle ABC is isosceles

C

The triangle ABC is neither isosceles nor right angled

D

The triangle ABC is equilateral

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the angles of triangle ABC: Given: \[ 4 \cos A \cos B + \sin 2A + \sin 2B + \sin 2C = 4 \] ### Step 1: Rewrite the equation We know that: \[ \sin 2A = 2 \sin A \cos A \] \[ \sin 2B = 2 \sin B \cos B \] \[ \sin 2C = 2 \sin C \cos C \] Substituting these into the equation gives: \[ 4 \cos A \cos B + 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C = 4 \] ### Step 2: Simplify the equation We can factor out 2 from the last three terms: \[ 4 \cos A \cos B + 2 (\sin A \cos A + \sin B \cos B + \sin C \cos C) = 4 \] ### Step 3: Analyze the triangle properties Since A, B, and C are angles of a triangle, we know that: \[ A + B + C = \pi \] Thus, we can express C as: \[ C = \pi - A - B \] ### Step 4: Substitute C into the equation Using the identity for sine: \[ \sin C = \sin(\pi - A - B) = \sin(A + B) \] This leads us to: \[ \sin C = \sin A \cos B + \cos A \sin B \] Now substituting this back into our equation: \[ 4 \cos A \cos B + 2 \left( \sin A \cos A + \sin B \cos B + (\sin A \cos B + \cos A \sin B) \right) = 4 \] ### Step 5: Further simplify This can be simplified to: \[ 4 \cos A \cos B + 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin A \cos B + 2 \cos A \sin B = 4 \] ### Step 6: Analyze the maximum values Since we know that \( \sin C \) must be less than or equal to 1, we can analyze the maximum values of the trigonometric functions involved. The maximum value of \( \cos A \cos B + \sin A \sin B \) occurs when \( A = B \). ### Step 7: Conclude the type of triangle If \( A = B \), then \( C = \pi - 2A \). For \( C \) to be \( \frac{\pi}{2} \), we must have: \[ A = B = \frac{\pi}{4} \] Thus, triangle ABC is a right-angled triangle with angles \( 45^\circ, 45^\circ, 90^\circ \). ### Final Conclusion From the analysis, we can conclude that: - The triangle ABC is isosceles (since \( A = B \)). - The triangle ABC is also right-angled (since \( C = 90^\circ \)). Thus, the correct statements are: 1. The triangle ABC is a right-angled triangle. 2. The triangle ABC is isosceles.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

If in a triangle ABC sin A = 4/5 and sin B = 12/13 , then sin C =

In a triangle ABC, sin A- cos B = Cos C , then angle B is

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. cos^3x.sin2x=sum(m=1)^n(am)sin mx is an identity in x.

    Text Solution

    |

  2. If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(a...

    Text Solution

    |

  3. The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B...

    Text Solution

    |

  4. Which of the following statement(s) is/are correct?

    Text Solution

    |

  5. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |

  6. If the sides of a right angled triangle are {cos 2 alpha + cos 2 bet...

    Text Solution

    |

  7. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  8. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  9. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  10. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  11. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  12. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  13. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  14. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  15. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  16. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  17. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  18. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  19. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  20. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |