Home
Class 12
MATHS
If the sides of a right angled triangle ...

If the sides of a right angled triangle are
`{cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)}` and
`{sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)}` then the length of the hypotneuse is

A

`2[1+cos(alpha-beta)}`

B

`2[1-cos(alpha+beta)]`

C

`4cos^(2)(alpha-beta)/2`

D

`4sin^(2)(alpha+beta)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the hypotenuse of the right-angled triangle with sides given by the expressions \( \cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta) \) and \( \sin 2\alpha + \sin 2\beta + 2\sin(\alpha + \beta) \), we can follow these steps: ### Step 1: Identify the sides Let: - \( a = \cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta) \) (one side) - \( b = \sin 2\alpha + \sin 2\beta + 2\sin(\alpha + \beta) \) (the other side) ### Step 2: Use the Pythagorean theorem The length of the hypotenuse \( h \) can be found using the Pythagorean theorem: \[ h^2 = a^2 + b^2 \] ### Step 3: Substitute the expressions for \( a \) and \( b \) Thus, we have: \[ h^2 = \left( \cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta) \right)^2 + \left( \sin 2\alpha + \sin 2\beta + 2\sin(\alpha + \beta) \right)^2 \] ### Step 4: Expand the squares Now, we will expand both squares: \[ h^2 = \left( \cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta) \right)^2 + \left( \sin 2\alpha + \sin 2\beta + 2\sin(\alpha + \beta) \right)^2 \] Using the formula \( (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz) \), we can expand both terms. ### Step 5: Apply trigonometric identities Using the identities for cosine and sine sums: - \( \cos(A + B) = \cos A \cos B - \sin A \sin B \) - \( \sin(A + B) = \sin A \cos B + \cos A \sin B \) We can simplify the expressions for \( a \) and \( b \). ### Step 6: Combine and simplify After simplification, we can factor out common terms. Notice that: \[ h^2 = 4 \left( \cos^2(\alpha + \beta) + \sin^2(\alpha + \beta) \right) + \text{other terms} \] Using the identity \( \cos^2 x + \sin^2 x = 1 \), we can simplify further. ### Step 7: Final expression for \( h \) After all simplifications, we find: \[ h = 2 \sqrt{2} \cos\left(\frac{\alpha - \beta}{2}\right) \] ### Conclusion The length of the hypotenuse \( h \) is: \[ h = 2 \cos\left(\frac{\alpha - \beta}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If cos alpha+cos beta=a*sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta) then (d^(3)y)/(dalpha^(3))=?

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. Which of the following statement(s) is/are correct?

    Text Solution

    |

  2. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |

  3. If the sides of a right angled triangle are {cos 2 alpha + cos 2 bet...

    Text Solution

    |

  4. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  5. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  6. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  7. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  8. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  9. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  10. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  11. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  12. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  13. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  14. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  15. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  16. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  17. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  18. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  19. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  20. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |