Home
Class 12
MATHS
Let a and b be real numbers such that si...

Let a and b be real numbers such that sina + sinb `=1/sqrt(2)`, cosa + cosb `=sqrt(3)/2`, then

A

`cos(a-b)=1`

B

cos(a-b)=0

C

sin(a+b) =`sqrt(3)/2`

D

`sin(a-b)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin a + \sin b = \frac{1}{\sqrt{2}} \) 2. \( \cos a + \cos b = \frac{\sqrt{3}}{2} \) ### Step 1: Use Sum-to-Product Identities Using the sum-to-product identities, we can rewrite the sine and cosine sums: \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] ### Step 2: Set Up the Equations From the identities, we can set up the following equations: \[ 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) = \frac{1}{\sqrt{2}} \quad (1) \] \[ 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) = \frac{\sqrt{3}}{2} \quad (2) \] ### Step 3: Simplify the Equations Dividing both equations by 2 gives: \[ \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) = \frac{1}{2\sqrt{2}} \quad (3) \] \[ \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) = \frac{\sqrt{3}}{4} \quad (4) \] ### Step 4: Divide Equation (3) by Equation (4) Now, we can divide equation (3) by equation (4): \[ \frac{\sin\left(\frac{a+b}{2}\right)}{\cos\left(\frac{a+b}{2}\right)} = \frac{\frac{1}{2\sqrt{2}}}{\frac{\sqrt{3}}{4}} \] This simplifies to: \[ \tan\left(\frac{a+b}{2}\right) = \frac{2}{\sqrt{6}} = \frac{1}{\sqrt{3}} \quad (5) \] ### Step 5: Find \( \frac{a+b}{2} \) From equation (5), we know: \[ \tan\left(\frac{a+b}{2}\right) = \frac{1}{\sqrt{3}} \] This implies: \[ \frac{a+b}{2} = \frac{\pi}{6} + n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, \[ a+b = \frac{\pi}{3} + 2n\pi \quad (6) \] ### Step 6: Substitute Back to Find \( \cos\left(\frac{a-b}{2}\right) \) Using equation (4): \[ \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) = \frac{\sqrt{3}}{4} \] We can find \( \cos\left(\frac{a+b}{2}\right) \): \[ \cos\left(\frac{a+b}{2}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Substituting into equation (4): \[ \frac{\sqrt{3}}{2} \cos\left(\frac{a-b}{2}\right) = \frac{\sqrt{3}}{4} \] This simplifies to: \[ \cos\left(\frac{a-b}{2}\right) = \frac{1}{2} \] ### Step 7: Find \( \frac{a-b}{2} \) From \( \cos\left(\frac{a-b}{2}\right) = \frac{1}{2} \), we have: \[ \frac{a-b}{2} = \frac{\pi}{3} + m\pi \quad \text{for } m \in \mathbb{Z} \] Thus, \[ a-b = \frac{2\pi}{3} + 2m\pi \quad (7) \] ### Step 8: Solve for \( a \) and \( b \) Now we can solve the two equations (6) and (7): 1. \( a + b = \frac{\pi}{3} + 2n\pi \) 2. \( a - b = \frac{2\pi}{3} + 2m\pi \) Adding these two equations: \[ 2a = \frac{\pi}{3} + \frac{2\pi}{3} + 2(n+m)\pi \] This gives: \[ 2a = \pi + 2(n+m)\pi \implies a = \frac{\pi}{2} + (n+m)\pi \] Subtracting the second equation from the first: \[ 2b = \frac{\pi}{3} - \frac{2\pi}{3} + 2(n-m)\pi \] This gives: \[ 2b = -\frac{\pi}{3} + 2(n-m)\pi \implies b = -\frac{\pi}{6} + (n-m)\pi \] ### Conclusion Thus, the values of \( a \) and \( b \) can be expressed in terms of integers \( n \) and \( m \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), then A =

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

Suppose A and B are two angles such that A , B in (0,pi) and satisfy sinA+sinB=1 and cosA+cosB=0. Then the value of 12cos2A+4cos2B is____

Suppose A and B are two angles such that A , B in (0,pi) and satisfy sinA+sinB=1 and cosA+cosB=0. Then the value of 12cos2A+4cos2B is____

If sinA+sinB=sqrt3(cosB-cosA),then sin3A+sin3B=

If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sinA = sinB- sin^(3)B , then the value of 1620 sin^(2) (A-B) is ……………..

If a and b are two real number lying between 0 and 1 such that z_1=a+i, z_2=1+bi and z_3=0 form an equilateral triangle , then (A) a=2+sqrt(3) (B) b=4-sqrt(3) (C) a=b=2-sqrt(3) (D) a=2,b=sqrt(3)

If a and b are two real number lying between 0 and 1 such that z_1=a+i, z_2=1+bi and z_3=0 form anequilateral trilangle , then (A) a=2+sqrt(3) (B) b=4-sqrt(3) (C) a=b=2-sqrt(3) (D) a=2,b=sqrt(3)

If A and B are complementary angles, then (a) sinA=cosB (b) cosA=sinB (c) tanA=cotB (d) secA=cos e c\ B

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (2sqrt(5))/9 (d) 2/(3sqrt(5))

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta=K, -1<=K<=1 then number of values of theta for same value ...

    Text Solution

    |

  2. If the sides of a right angled triangle are {cos 2 alpha + cos 2 bet...

    Text Solution

    |

  3. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  4. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  5. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  6. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  7. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  8. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  9. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  10. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  11. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  12. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  13. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  14. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  15. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  16. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  17. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  18. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  19. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  20. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |