Home
Class 12
MATHS
If 4costheta-3sectheta=2tantheta, then ...

If `4costheta-3sectheta=2tantheta`, then `theta` is equal to

A

`npi + (-1)^(n)(pi/10)`

B

`npi + (-1)^(n)pi/6`

C

`npi -(-1)^(n) (3pi)/10`

D

`npi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4 \cos \theta - 3 \sec \theta = 2 \tan \theta \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions in terms of sine and cosine. We know that: - \( \sec \theta = \frac{1}{\cos \theta} \) - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) Substituting these into the equation gives: \[ 4 \cos \theta - 3 \cdot \frac{1}{\cos \theta} = 2 \cdot \frac{\sin \theta}{\cos \theta} \] ### Step 2: Multiply through by \( \cos \theta \) to eliminate the fractions. This leads to: \[ 4 \cos^2 \theta - 3 = 2 \sin \theta \] ### Step 3: Rearrange the equation. Rearranging gives: \[ 4 \cos^2 \theta - 2 \sin \theta - 3 = 0 \] ### Step 4: Use the Pythagorean identity. Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we substitute: \[ 4(1 - \sin^2 \theta) - 2 \sin \theta - 3 = 0 \] This simplifies to: \[ 4 - 4 \sin^2 \theta - 2 \sin \theta - 3 = 0 \] or \[ -4 \sin^2 \theta - 2 \sin \theta + 1 = 0 \] ### Step 5: Multiply through by -1 to simplify. This gives: \[ 4 \sin^2 \theta + 2 \sin \theta - 1 = 0 \] ### Step 6: Solve the quadratic equation. Using the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 4, b = 2, c = -1 \): \[ \sin \theta = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} \] \[ = \frac{-2 \pm \sqrt{4 + 16}}{8} \] \[ = \frac{-2 \pm \sqrt{20}}{8} \] \[ = \frac{-2 \pm 2\sqrt{5}}{8} \] \[ = \frac{-1 \pm \sqrt{5}}{4} \] ### Step 7: Find the values of \( \theta \). Thus, we have: 1. \( \sin \theta = \frac{-1 + \sqrt{5}}{4} \) 2. \( \sin \theta = \frac{-1 - \sqrt{5}}{4} \) (not valid since sine values must be between -1 and 1) ### Step 8: Determine \( \theta \) from \( \sin \theta = \frac{-1 + \sqrt{5}}{4} \). This value corresponds to angles: - \( \theta = \sin^{-1} \left( \frac{-1 + \sqrt{5}}{4} \right) \) - The general solutions can be expressed as: \[ \theta = n\pi + (-1)^n \cdot \sin^{-1} \left( \frac{-1 + \sqrt{5}}{4} \right) \] ### Conclusion: Thus, the final answer is: \[ \theta = n\pi + (-1)^n \cdot \frac{\pi}{10} \quad \text{(Option 1)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Solve 4costheta-3sectheta=tantheta

If 1/6sintheta,costheta,tantheta are in GdotPdot, then theta is equal to

Find the minimum value of 2costheta+1/sin theta+sqrt2tantheta , where theta is acute angle.

If 3costheta-4sintheta=2costheta+sintheta , find tantheta .

If costheta+sectheta=-2, theta in [0,2pi] then sin^8theta+cos^8theta is equal to

Solve: tantheta+sectheta=2costheta

Prove that (sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta) , using the identity sec^2theta=1+tan^2theta

(tantheta)/(sectheta-1)+(tantheta)/(sectheta+1) is equal to (a) 2tantheta (b) 2sectheta (c) 2\ cos e c\ theta (d) 2\ t a nthetasectheta

If 4 tantheta=3, then ((4sintheta-costheta)/(4 sintheta+costheta)) is equal to

(cos e c\ theta-sintheta)(sectheta-costheta)(tantheta+cottheta) is equal (a) 0 (b) 1 (c) -1 (d) None of these

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. Let a and b be real numbers such that sina + sinb =1/sqrt(2), cosa + c...

    Text Solution

    |

  2. Let A and B denote the statements A:cos alpha+ cos beta+cos gamma=0 ...

    Text Solution

    |

  3. If 4costheta-3sectheta=2tantheta, then theta is equal to

    Text Solution

    |

  4. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  5. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  6. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  7. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  8. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  9. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  10. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  11. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  12. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  13. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  14. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  15. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  16. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  17. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  18. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  19. In a triangle ABC

    Text Solution

    |

  20. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |