Home
Class 12
MATHS
Solve the equation sinx + sqrt(3)cosx=sq...

Solve the equation `sinx + sqrt(3)cosx=sqrt(2)`

A

`x = npi +(-1)^npi/4-pi/3, n int l`

B

`x =2npi - (5pi)/12, n int I`

C

`x = npi + (5pi)/12, n int I`

D

`x = 2npi+pi/12, n int I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sqrt{3} \cos x = \sqrt{2} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin x + \sqrt{3} \cos x = \sqrt{2} \] We can rearrange it as: \[ \sqrt{3} \cos x + \sin x = \sqrt{2} \] ### Step 2: Divide by 2 Next, we divide the entire equation by 2: \[ \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x = \frac{\sqrt{2}}{2} \] ### Step 3: Recognize trigonometric values We know that: \[ \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right) \quad \text{and} \quad \frac{1}{2} = \sin\left(\frac{\pi}{6}\right) \] Thus, we can rewrite the left-hand side using the cosine of a sum formula: \[ \cos\left(\frac{\pi}{6}\right) \cos x + \sin\left(\frac{\pi}{6}\right) \sin x = \frac{\sqrt{2}}{2} \] ### Step 4: Use the cosine addition formula Using the cosine addition formula \( \cos(a - b) = \cos a \cos b + \sin a \sin b \), we have: \[ \cos\left(x - \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \] ### Step 5: Solve for \( x \) The equation \( \cos\left(x - \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \) implies: \[ x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{4} \quad \text{for } n \in \mathbb{Z} \] This gives us two equations: 1. \( x - \frac{\pi}{6} = 2n\pi + \frac{\pi}{4} \) 2. \( x - \frac{\pi}{6} = 2n\pi - \frac{\pi}{4} \) ### Step 6: Solve each equation for \( x \) For the first equation: \[ x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{6} \] Finding a common denominator (12): \[ x = 2n\pi + \frac{3\pi}{12} + \frac{2\pi}{12} = 2n\pi + \frac{5\pi}{12} \] For the second equation: \[ x = 2n\pi - \frac{\pi}{4} + \frac{\pi}{6} \] Again, finding a common denominator (12): \[ x = 2n\pi - \frac{3\pi}{12} + \frac{2\pi}{12} = 2n\pi - \frac{\pi}{12} \] ### Final Solutions Thus, the solutions are: 1. \( x = 2n\pi + \frac{5\pi}{12} \) 2. \( x = 2n\pi - \frac{\pi}{12} \) ### Summary of Solutions The final solutions can be summarized as: - \( x = 2n\pi + \frac{5\pi}{12} \) - \( x = 2n\pi - \frac{\pi}{12} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sinx+cosx=1

Solve the equaiton : 2 sin x + sqrt(3) sinx=0

Solve the equation: (4sqrt(cos x/2)-5-(sqrt(2))/2)^2+ sqrt(2)(4sqrt(cos x/2)-5-(sqrt(2))/2)-(cosx)/2=0

Solve the equation tan x + (cosx)/(sqrt(1+sin2x))=2 .

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation sqrt3cos x + sin x = sqrt2 .

Solve the equation sqrt3cos x + sin x = sqrt2 .

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

Solve the equation sqrt(3)x^(2)-sqrt(2)x+3sqrt(3)=0

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  2. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  3. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  4. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  5. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  6. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  7. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  8. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  9. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  10. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  11. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  12. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  13. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  14. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  15. In a triangle ABC

    Text Solution

    |

  16. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |

  17. In a triangle ABC, points D and E are taken on side BC such that BD= D...

    Text Solution

    |

  18. In a triangle, with usual notations, the length of the bisector of ang...

    Text Solution

    |

  19. An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfyin...

    Text Solution

    |

  20. In a triangle ABC, acosB + b cosC + c cosA =(a+b+c)/2 then

    Text Solution

    |