Home
Class 12
MATHS
(1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e ...

`(1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y`

A

`((5pi)/(24), (pi)/24)`,

B

`(-(7pi)/24, -(11pi)/(24))`

C

`(-(115pi)/(24), (-119pi)/(24))`

D

`((5pi)/24, (13pi)/24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{1 - \tan x}{1 + \tan x} = \tan y\) and \(x - y = \frac{\pi}{6}\), we will follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \frac{1 - \tan x}{1 + \tan x} = \tan y \] We can use the tangent subtraction formula, which states that: \[ \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x} \] So, we can rewrite the equation as: \[ \tan\left(\frac{\pi}{4} - x\right) = \tan y \] ### Step 2: Set up the equation From the equality of tangents, we can say: \[ \frac{\pi}{4} - x = y + n\pi \quad (n \in \mathbb{Z}) \] For simplicity, we will consider \(n = 0\): \[ \frac{\pi}{4} - x = y \] This can be rearranged to: \[ x + y = \frac{\pi}{4} \quad \text{(Equation 1)} \] ### Step 3: Use the second equation We are also given: \[ x - y = \frac{\pi}{6} \quad \text{(Equation 2)} \] ### Step 4: Solve the system of equations Now we have a system of equations: 1. \(x + y = \frac{\pi}{4}\) 2. \(x - y = \frac{\pi}{6}\) We can add these two equations: \[ (x + y) + (x - y) = \frac{\pi}{4} + \frac{\pi}{6} \] This simplifies to: \[ 2x = \frac{\pi}{4} + \frac{\pi}{6} \] ### Step 5: Find a common denominator To add \(\frac{\pi}{4}\) and \(\frac{\pi}{6}\), we need a common denominator: The least common multiple of 4 and 6 is 12. Thus: \[ \frac{\pi}{4} = \frac{3\pi}{12}, \quad \frac{\pi}{6} = \frac{2\pi}{12} \] So, \[ \frac{\pi}{4} + \frac{\pi}{6} = \frac{3\pi}{12} + \frac{2\pi}{12} = \frac{5\pi}{12} \] Now we have: \[ 2x = \frac{5\pi}{12} \] ### Step 6: Solve for \(x\) Dividing both sides by 2 gives: \[ x = \frac{5\pi}{24} \] ### Step 7: Substitute to find \(y\) Now we substitute \(x\) back into Equation 1: \[ \frac{5\pi}{24} + y = \frac{\pi}{4} \] Substituting \(\frac{\pi}{4}\) with \(\frac{6\pi}{24}\): \[ \frac{5\pi}{24} + y = \frac{6\pi}{24} \] Subtracting \(\frac{5\pi}{24}\) from both sides: \[ y = \frac{6\pi}{24} - \frac{5\pi}{24} = \frac{\pi}{24} \] ### Final Answer Thus, the values of \(x\) and \(y\) are: \[ x = \frac{5\pi}{24}, \quad y = \frac{\pi}{24} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If (1-tanx)/(1+tanx)=tany and x-y = pi/6 , then x,y are respectively (A) (5pi)/24,pi/24 (B) -(7pi)/24, - (11pi)/24 (C) -(115pi)/24, (-119pi)/24 (D) none of these

y=x^(tanx)

If y=(tanx)/(tan3x), then

If tanx tany=a and x+y=2b show that tanx and tany are the roots of the equation z^2-(1-a)tan2b*z+a=0

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

Evaluate: int(1-tanx)/(1+tanx)dx

inte^x((2tanx)/(1+tanx)+cot^2(x+pi/4))dxi se q u a lto e^xtan(pi/4-x)+c e^xtan(x-pi/4)+c e^xtan((3pi)/4-x)+c (d) none of these

If A= [{:( 1,-tanx ),( tanx ,1):}] then the value of [A^(T) A^(-1) ] is

If y=logsqrt((1-tanx)/(1+tanx)) , prove that (dy)/(dx)=-sec2x .

If y=logsqrt((1+tanx)/(1-tanx)),"Prove that " (dy)/(dx)=sec2x

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  2. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  3. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  4. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  5. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  6. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  7. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  8. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  9. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  10. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  11. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  12. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  13. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  14. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  15. In a triangle ABC

    Text Solution

    |

  16. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |

  17. In a triangle ABC, points D and E are taken on side BC such that BD= D...

    Text Solution

    |

  18. In a triangle, with usual notations, the length of the bisector of ang...

    Text Solution

    |

  19. An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfyin...

    Text Solution

    |

  20. In a triangle ABC, acosB + b cosC + c cosA =(a+b+c)/2 then

    Text Solution

    |