Home
Class 12
MATHS
The possible value of theta in [-pi, pi]...

The possible value of `theta in [-pi, pi]` satisfying the equation `2(costheta + cos 2theta)+ (1+2costheta)sin 2theta = 2sintheta` are

A

`-pi/2`

B

`-pi/3`

C

`pi/3`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2(\cos \theta + \cos 2\theta) + (1 + 2\cos \theta) \sin 2\theta = 2\sin \theta \), we will follow these steps: ### Step 1: Use Trigonometric Identities We know that: - \( \cos 2\theta = 2\cos^2 \theta - 1 \) - \( \sin 2\theta = 2\sin \theta \cos \theta \) Substituting these identities into the equation gives us: \[ 2(\cos \theta + (2\cos^2 \theta - 1)) + (1 + 2\cos \theta)(2\sin \theta \cos \theta) = 2\sin \theta \] ### Step 2: Simplify the Equation Expanding the equation: \[ 2\cos \theta + 2(2\cos^2 \theta - 1) + (2\sin \theta \cos \theta + 4\sin \theta \cos^2 \theta) = 2\sin \theta \] This simplifies to: \[ 2\cos \theta + 4\cos^2 \theta - 2 + 2\sin \theta \cos \theta + 4\sin \theta \cos^2 \theta = 2\sin \theta \] ### Step 3: Rearranging Terms Rearranging the equation gives us: \[ 4\cos^2 \theta + 2\cos \theta + 2\sin \theta \cos \theta + 4\sin \theta \cos^2 \theta - 2 - 2\sin \theta = 0 \] Combining like terms: \[ 4\cos^2 \theta(1 + \sin \theta) + 2\cos \theta(1 + \sin \theta) - 2(1 + \sin \theta) = 0 \] ### Step 4: Factor the Equation Factoring out \( (1 + \sin \theta) \): \[ (1 + \sin \theta)(4\cos^2 \theta + 2\cos \theta - 2) = 0 \] ### Step 5: Solve Each Factor 1. **From \( 1 + \sin \theta = 0 \)**: \[ \sin \theta = -1 \implies \theta = -\frac{\pi}{2} \] 2. **From \( 4\cos^2 \theta + 2\cos \theta - 2 = 0 \)**: Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = 4, b = 2, c = -2 \] \[ \cos \theta = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 4 \cdot (-2)}}{2 \cdot 4} = \frac{-2 \pm \sqrt{4 + 32}}{8} = \frac{-2 \pm 6}{8} \] This gives: \[ \cos \theta = \frac{4}{8} = \frac{1}{2} \quad \text{or} \quad \cos \theta = \frac{-8}{8} = -1 \] - **For \( \cos \theta = \frac{1}{2} \)**: \[ \theta = \frac{\pi}{3}, -\frac{\pi}{3} \] - **For \( \cos \theta = -1 \)**: \[ \theta = \pi \] ### Step 6: Collect All Solutions The possible values of \( \theta \) in the interval \([- \pi, \pi]\) are: \[ \theta = -\frac{\pi}{2}, \frac{\pi}{3}, -\frac{\pi}{3}, \pi \] ### Final Answer The possible values of \( \theta \) satisfying the equation are: \[ \theta = -\frac{\pi}{2}, \frac{\pi}{3}, -\frac{\pi}{3}, \pi \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

The number of values of theta in the range [0, 2pi] satisfying the equation cos^4 2theta + 2 sin^2 2theta = 17(sintheta + costheta)^8 is

The number of values of thetain[0,2pi] that satisfy the equation sin^2theta-costheta=1/4

Solve the following equation: costheta+sintheta=cos2theta+sin2theta

The number of values of x lying in [-pi, pi] and satisfying 2sin^2theta = cos2theta and sin2theta+ 2cos2theta-costheta-1 = 0 is

Writhe the number of values of theta\ in\ [0,2pi] thast satisfy the equation sin^2theta-costheta=1/4dot

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that : (sintheta +sin2theta)/(1+costheta+cos2theta)=tantheta

The solution of the equation cos^2theta-2costheta=4sintheta-sin2theta where theta in [0,pi] is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  2. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  3. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  4. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  5. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  6. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  7. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  8. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  9. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  10. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  11. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  12. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  13. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  14. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  15. In a triangle ABC

    Text Solution

    |

  16. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |

  17. In a triangle ABC, points D and E are taken on side BC such that BD= D...

    Text Solution

    |

  18. In a triangle, with usual notations, the length of the bisector of ang...

    Text Solution

    |

  19. An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfyin...

    Text Solution

    |

  20. In a triangle ABC, acosB + b cosC + c cosA =(a+b+c)/2 then

    Text Solution

    |